Distinct Features of Canine Non-conventional CD4CD8α Double-Negative TCRαβ+ vs. TCRγδ+ T Cells

Friederike V. Rabiger, Kathrin Rothe, Heiner von Buttlar, Doris Bismarck, Mathias Büttner, Peter F. Moore, Maria Eschke, Gottfried Alber

Research output: Contribution to journalArticle

Abstract

The role of conventional TCRαβ+CD4+ or TCRαβ+CD8α+ single-positive (sp) T lymphocytes in adaptive immunity is well-recognized. However, non-conventional T cells expressing TCRαβ or TCRγδ but lacking CD4 and CD8α expression [i.e., CD4CD8α double-negative (dn) T cells] are thought to play a role at the interface between the innate and adaptive immune system. Dn T cells are frequent in swine, cattle or sheep and predominantly express TCRγδ. In contrast, TCRγδ+ T cells are rare in dogs. In this study, we identified a high proportion of canine dn T cells in the TCRαβ+ T cell population of PBMC, lymphatic and non-lymphatic organs. In PBMC, the frequency of this T cell subpopulation made up one third of the frequency of TCRαβ+CD4+ sp, and almost half of the frequency of TCRαβ+CD8α+ sp T cells (i.e., ~15% of all TCRαβ+ T cells). Among TCRαβ+CD4CD8α dn T cells of PBMC and tissues, FoxP3+ cells were identified indicating regulatory potential of this T cell subset. 80% of peripheral blood FoxP3+TCRαβ+CD4CD8α dn T cells co-expressed CD25, and, interestingly, also the FoxP3-negative TCRαβ+CD4CD8α dn T cells comprised ~34% CD25+ cells. Some of the FoxP3-positive TCRαβ+CD4CD8α dn T cells co-expressed GATA-3 suggesting stable function of regulatory T cells. The frequency of GATA-3 expression by FoxP3TCRαβ+CD4CD8α dn T cells was even higher as compared with TCRαβ+CD4+ sp T cells (20.6% vs. 11.9%). Albeit lacking FoxP3 and CD25 expression, TCRγδ+CD4CD8α dn T cells also expressed substantial proportions of GATA-3. In addition, TCRαβ+CD4CD8α dn T cells produced IFN-γ and IL-17A upon stimulation. T-bet and granzyme B were only weakly expressed by both dn T cell subsets. In conclusion, this study identifies two dn T cell subsets in the dog: (i) a large (~7.5% in Peyer's patches, ~15% in lung) population of TCRαβ+CD4CD8α dn T cells with subpopulations thereof showing an activated phenotype, high expression of FoxP3 or GATA-3 as well as production of IFN-γ or IL-17A and (ii) a small TCRγδ+CD4CD8α dn T cell subset also expressing GATA-3 without production of IFN-γ or IL-17A. It will be exciting to unravel the function of each subset during immune homeostasis and diseases of dogs.

Original languageEnglish (US)
Article number2748
JournalFrontiers in immunology
Volume10
DOIs
StatePublished - Nov 22 2019

Fingerprint

Canidae
T-Lymphocytes
T-Lymphocyte Subsets
Interleukin-17
Dogs
Regulatory T-Lymphocytes
CD8-Positive T-Lymphocytes
Granzymes
Peyer's Patches
Immune System Diseases
Adaptive Immunity
Population
Immune System
Sheep
Homeostasis
Swine

Keywords

  • canine T cells
  • CD4CD8α
  • dog
  • double-negative
  • non-conventional T cells
  • TCRαβ
  • TCRγδ

ASJC Scopus subject areas

  • Immunology and Allergy
  • Immunology

Cite this

Distinct Features of Canine Non-conventional CD4CD8α Double-Negative TCRαβ+ vs. TCRγδ+ T Cells. / Rabiger, Friederike V.; Rothe, Kathrin; von Buttlar, Heiner; Bismarck, Doris; Büttner, Mathias; Moore, Peter F.; Eschke, Maria; Alber, Gottfried.

In: Frontiers in immunology, Vol. 10, 2748, 22.11.2019.

Research output: Contribution to journalArticle

Rabiger, Friederike V. ; Rothe, Kathrin ; von Buttlar, Heiner ; Bismarck, Doris ; Büttner, Mathias ; Moore, Peter F. ; Eschke, Maria ; Alber, Gottfried. / Distinct Features of Canine Non-conventional CD4CD8α Double-Negative TCRαβ+ vs. TCRγδ+ T Cells. In: Frontiers in immunology. 2019 ; Vol. 10.
@article{a56828630d4747f694d788d89998347a,
title = "Distinct Features of Canine Non-conventional CD4−CD8α− Double-Negative TCRαβ+ vs. TCRγδ+ T Cells",
abstract = "The role of conventional TCRαβ+CD4+ or TCRαβ+CD8α+ single-positive (sp) T lymphocytes in adaptive immunity is well-recognized. However, non-conventional T cells expressing TCRαβ or TCRγδ but lacking CD4 and CD8α expression [i.e., CD4−CD8α− double-negative (dn) T cells] are thought to play a role at the interface between the innate and adaptive immune system. Dn T cells are frequent in swine, cattle or sheep and predominantly express TCRγδ. In contrast, TCRγδ+ T cells are rare in dogs. In this study, we identified a high proportion of canine dn T cells in the TCRαβ+ T cell population of PBMC, lymphatic and non-lymphatic organs. In PBMC, the frequency of this T cell subpopulation made up one third of the frequency of TCRαβ+CD4+ sp, and almost half of the frequency of TCRαβ+CD8α+ sp T cells (i.e., ~15{\%} of all TCRαβ+ T cells). Among TCRαβ+CD4−CD8α− dn T cells of PBMC and tissues, FoxP3+ cells were identified indicating regulatory potential of this T cell subset. 80{\%} of peripheral blood FoxP3+TCRαβ+CD4−CD8α− dn T cells co-expressed CD25, and, interestingly, also the FoxP3-negative TCRαβ+CD4−CD8α− dn T cells comprised ~34{\%} CD25+ cells. Some of the FoxP3-positive TCRαβ+CD4−CD8α− dn T cells co-expressed GATA-3 suggesting stable function of regulatory T cells. The frequency of GATA-3 expression by FoxP3−TCRαβ+CD4−CD8α− dn T cells was even higher as compared with TCRαβ+CD4+ sp T cells (20.6{\%} vs. 11.9{\%}). Albeit lacking FoxP3 and CD25 expression, TCRγδ+CD4−CD8α− dn T cells also expressed substantial proportions of GATA-3. In addition, TCRαβ+CD4−CD8α− dn T cells produced IFN-γ and IL-17A upon stimulation. T-bet and granzyme B were only weakly expressed by both dn T cell subsets. In conclusion, this study identifies two dn T cell subsets in the dog: (i) a large (~7.5{\%} in Peyer's patches, ~15{\%} in lung) population of TCRαβ+CD4−CD8α− dn T cells with subpopulations thereof showing an activated phenotype, high expression of FoxP3 or GATA-3 as well as production of IFN-γ or IL-17A and (ii) a small TCRγδ+CD4−CD8α− dn T cell subset also expressing GATA-3 without production of IFN-γ or IL-17A. It will be exciting to unravel the function of each subset during immune homeostasis and diseases of dogs.",
keywords = "canine T cells, CD4CD8α, dog, double-negative, non-conventional T cells, TCRαβ, TCRγδ",
author = "Rabiger, {Friederike V.} and Kathrin Rothe and {von Buttlar}, Heiner and Doris Bismarck and Mathias B{\"u}ttner and Moore, {Peter F.} and Maria Eschke and Gottfried Alber",
year = "2019",
month = "11",
day = "22",
doi = "10.3389/fimmu.2019.02748",
language = "English (US)",
volume = "10",
journal = "Frontiers in Immunology",
issn = "1664-3224",
publisher = "Frontiers Media S. A.",

}

TY - JOUR

T1 - Distinct Features of Canine Non-conventional CD4−CD8α− Double-Negative TCRαβ+ vs. TCRγδ+ T Cells

AU - Rabiger, Friederike V.

AU - Rothe, Kathrin

AU - von Buttlar, Heiner

AU - Bismarck, Doris

AU - Büttner, Mathias

AU - Moore, Peter F.

AU - Eschke, Maria

AU - Alber, Gottfried

PY - 2019/11/22

Y1 - 2019/11/22

N2 - The role of conventional TCRαβ+CD4+ or TCRαβ+CD8α+ single-positive (sp) T lymphocytes in adaptive immunity is well-recognized. However, non-conventional T cells expressing TCRαβ or TCRγδ but lacking CD4 and CD8α expression [i.e., CD4−CD8α− double-negative (dn) T cells] are thought to play a role at the interface between the innate and adaptive immune system. Dn T cells are frequent in swine, cattle or sheep and predominantly express TCRγδ. In contrast, TCRγδ+ T cells are rare in dogs. In this study, we identified a high proportion of canine dn T cells in the TCRαβ+ T cell population of PBMC, lymphatic and non-lymphatic organs. In PBMC, the frequency of this T cell subpopulation made up one third of the frequency of TCRαβ+CD4+ sp, and almost half of the frequency of TCRαβ+CD8α+ sp T cells (i.e., ~15% of all TCRαβ+ T cells). Among TCRαβ+CD4−CD8α− dn T cells of PBMC and tissues, FoxP3+ cells were identified indicating regulatory potential of this T cell subset. 80% of peripheral blood FoxP3+TCRαβ+CD4−CD8α− dn T cells co-expressed CD25, and, interestingly, also the FoxP3-negative TCRαβ+CD4−CD8α− dn T cells comprised ~34% CD25+ cells. Some of the FoxP3-positive TCRαβ+CD4−CD8α− dn T cells co-expressed GATA-3 suggesting stable function of regulatory T cells. The frequency of GATA-3 expression by FoxP3−TCRαβ+CD4−CD8α− dn T cells was even higher as compared with TCRαβ+CD4+ sp T cells (20.6% vs. 11.9%). Albeit lacking FoxP3 and CD25 expression, TCRγδ+CD4−CD8α− dn T cells also expressed substantial proportions of GATA-3. In addition, TCRαβ+CD4−CD8α− dn T cells produced IFN-γ and IL-17A upon stimulation. T-bet and granzyme B were only weakly expressed by both dn T cell subsets. In conclusion, this study identifies two dn T cell subsets in the dog: (i) a large (~7.5% in Peyer's patches, ~15% in lung) population of TCRαβ+CD4−CD8α− dn T cells with subpopulations thereof showing an activated phenotype, high expression of FoxP3 or GATA-3 as well as production of IFN-γ or IL-17A and (ii) a small TCRγδ+CD4−CD8α− dn T cell subset also expressing GATA-3 without production of IFN-γ or IL-17A. It will be exciting to unravel the function of each subset during immune homeostasis and diseases of dogs.

AB - The role of conventional TCRαβ+CD4+ or TCRαβ+CD8α+ single-positive (sp) T lymphocytes in adaptive immunity is well-recognized. However, non-conventional T cells expressing TCRαβ or TCRγδ but lacking CD4 and CD8α expression [i.e., CD4−CD8α− double-negative (dn) T cells] are thought to play a role at the interface between the innate and adaptive immune system. Dn T cells are frequent in swine, cattle or sheep and predominantly express TCRγδ. In contrast, TCRγδ+ T cells are rare in dogs. In this study, we identified a high proportion of canine dn T cells in the TCRαβ+ T cell population of PBMC, lymphatic and non-lymphatic organs. In PBMC, the frequency of this T cell subpopulation made up one third of the frequency of TCRαβ+CD4+ sp, and almost half of the frequency of TCRαβ+CD8α+ sp T cells (i.e., ~15% of all TCRαβ+ T cells). Among TCRαβ+CD4−CD8α− dn T cells of PBMC and tissues, FoxP3+ cells were identified indicating regulatory potential of this T cell subset. 80% of peripheral blood FoxP3+TCRαβ+CD4−CD8α− dn T cells co-expressed CD25, and, interestingly, also the FoxP3-negative TCRαβ+CD4−CD8α− dn T cells comprised ~34% CD25+ cells. Some of the FoxP3-positive TCRαβ+CD4−CD8α− dn T cells co-expressed GATA-3 suggesting stable function of regulatory T cells. The frequency of GATA-3 expression by FoxP3−TCRαβ+CD4−CD8α− dn T cells was even higher as compared with TCRαβ+CD4+ sp T cells (20.6% vs. 11.9%). Albeit lacking FoxP3 and CD25 expression, TCRγδ+CD4−CD8α− dn T cells also expressed substantial proportions of GATA-3. In addition, TCRαβ+CD4−CD8α− dn T cells produced IFN-γ and IL-17A upon stimulation. T-bet and granzyme B were only weakly expressed by both dn T cell subsets. In conclusion, this study identifies two dn T cell subsets in the dog: (i) a large (~7.5% in Peyer's patches, ~15% in lung) population of TCRαβ+CD4−CD8α− dn T cells with subpopulations thereof showing an activated phenotype, high expression of FoxP3 or GATA-3 as well as production of IFN-γ or IL-17A and (ii) a small TCRγδ+CD4−CD8α− dn T cell subset also expressing GATA-3 without production of IFN-γ or IL-17A. It will be exciting to unravel the function of each subset during immune homeostasis and diseases of dogs.

KW - canine T cells

KW - CD4CD8α

KW - dog

KW - double-negative

KW - non-conventional T cells

KW - TCRαβ

KW - TCRγδ

UR - http://www.scopus.com/inward/record.url?scp=85076361390&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=85076361390&partnerID=8YFLogxK

U2 - 10.3389/fimmu.2019.02748

DO - 10.3389/fimmu.2019.02748

M3 - Article

C2 - 31824515

AN - SCOPUS:85076361390

VL - 10

JO - Frontiers in Immunology

JF - Frontiers in Immunology

SN - 1664-3224

M1 - 2748

ER -