Differential effects of growth hormone and prolactin on murine T cell development and function

William J Murphy, Scott K. Durum, Dan L. Longo

Research output: Contribution to journalArticle

127 Citations (Scopus)

Abstract

DW/J dwarf mice have a defect in their anterior pituitary and are deficient in growth hormone (GH) and prolactin (PRL). These mice have been demonstrated previously to have a deficiency in CD4/CD8 double-positive thymocytes, which could be corrected by treatment of these mice with recombinant human GH. Since PRL has been implicated in T cell function and human GH can interact with the PRL receptor, DW/J dwarf mice were treated with either ovine GH (ovGH) (20 μg/d) or ovine PRL (ovPRL) (20 μg/d). The ovine hormones can only bind their own specific receptors in the mouse. After several weeks of treatment, it was found that these two hormones produced markedly contrasting effects on T cells. Phenotypic analysis of the lymphoid organs was performed by flow cytometry and the functional capability of the peripheral T cells was assessed by immunizing the mice and determining the extent of antigen-specific proliferation of T cells obtained from the draining lymph nodes or by determining splenic mitogen responses. The results indicated that ovGH administration to dwarf mice resulted in significant increases in thymic cellularity yet had little effect on peripheral T cell responses. In contrast, the administration of ovPRL resulted in a further decrease in thymic cellularity when compared with untreated dwarf mice. No thymic effects of either ovGH or ovPRL administration were detected on the normal +/? counterparts. However, ovPRL administration resulted in a significant increase in the number and function of antigen-specific peripheral T cells in both immunized dwarf and +/? mice. The adjuvant effects of PRL occurred even though the mice also received complete Freund's adjuvant. These results suggest that neuroendocrine hormones may act in concert in T cell development. GH appears to promote thymocyte proliferation, while PRL appears to decrease thymus size and yet augment the number and function of antigen-specific T cells in the periphery.

Original languageEnglish (US)
Pages (from-to)231-236
Number of pages6
JournalJournal of Experimental Medicine
Volume178
Issue number1
StatePublished - Jul 1 1993
Externally publishedYes

Fingerprint

Prolactin
Growth Hormone
Sheep
T-Lymphocytes
Human Growth Hormone
Hormones
Thymocytes
Antigens
Prolactin Receptors
Freund's Adjuvant
Mitogens
Thymus Gland
Flow Cytometry
Lymph Nodes

ASJC Scopus subject areas

  • Immunology

Cite this

Differential effects of growth hormone and prolactin on murine T cell development and function. / Murphy, William J; Durum, Scott K.; Longo, Dan L.

In: Journal of Experimental Medicine, Vol. 178, No. 1, 01.07.1993, p. 231-236.

Research output: Contribution to journalArticle

@article{85e25a7bb910422bad3cc9925b751df9,
title = "Differential effects of growth hormone and prolactin on murine T cell development and function",
abstract = "DW/J dwarf mice have a defect in their anterior pituitary and are deficient in growth hormone (GH) and prolactin (PRL). These mice have been demonstrated previously to have a deficiency in CD4/CD8 double-positive thymocytes, which could be corrected by treatment of these mice with recombinant human GH. Since PRL has been implicated in T cell function and human GH can interact with the PRL receptor, DW/J dwarf mice were treated with either ovine GH (ovGH) (20 μg/d) or ovine PRL (ovPRL) (20 μg/d). The ovine hormones can only bind their own specific receptors in the mouse. After several weeks of treatment, it was found that these two hormones produced markedly contrasting effects on T cells. Phenotypic analysis of the lymphoid organs was performed by flow cytometry and the functional capability of the peripheral T cells was assessed by immunizing the mice and determining the extent of antigen-specific proliferation of T cells obtained from the draining lymph nodes or by determining splenic mitogen responses. The results indicated that ovGH administration to dwarf mice resulted in significant increases in thymic cellularity yet had little effect on peripheral T cell responses. In contrast, the administration of ovPRL resulted in a further decrease in thymic cellularity when compared with untreated dwarf mice. No thymic effects of either ovGH or ovPRL administration were detected on the normal +/? counterparts. However, ovPRL administration resulted in a significant increase in the number and function of antigen-specific peripheral T cells in both immunized dwarf and +/? mice. The adjuvant effects of PRL occurred even though the mice also received complete Freund's adjuvant. These results suggest that neuroendocrine hormones may act in concert in T cell development. GH appears to promote thymocyte proliferation, while PRL appears to decrease thymus size and yet augment the number and function of antigen-specific T cells in the periphery.",
author = "Murphy, {William J} and Durum, {Scott K.} and Longo, {Dan L.}",
year = "1993",
month = "7",
day = "1",
language = "English (US)",
volume = "178",
pages = "231--236",
journal = "Journal of Experimental Medicine",
issn = "0022-1007",
publisher = "Rockefeller University Press",
number = "1",

}

TY - JOUR

T1 - Differential effects of growth hormone and prolactin on murine T cell development and function

AU - Murphy, William J

AU - Durum, Scott K.

AU - Longo, Dan L.

PY - 1993/7/1

Y1 - 1993/7/1

N2 - DW/J dwarf mice have a defect in their anterior pituitary and are deficient in growth hormone (GH) and prolactin (PRL). These mice have been demonstrated previously to have a deficiency in CD4/CD8 double-positive thymocytes, which could be corrected by treatment of these mice with recombinant human GH. Since PRL has been implicated in T cell function and human GH can interact with the PRL receptor, DW/J dwarf mice were treated with either ovine GH (ovGH) (20 μg/d) or ovine PRL (ovPRL) (20 μg/d). The ovine hormones can only bind their own specific receptors in the mouse. After several weeks of treatment, it was found that these two hormones produced markedly contrasting effects on T cells. Phenotypic analysis of the lymphoid organs was performed by flow cytometry and the functional capability of the peripheral T cells was assessed by immunizing the mice and determining the extent of antigen-specific proliferation of T cells obtained from the draining lymph nodes or by determining splenic mitogen responses. The results indicated that ovGH administration to dwarf mice resulted in significant increases in thymic cellularity yet had little effect on peripheral T cell responses. In contrast, the administration of ovPRL resulted in a further decrease in thymic cellularity when compared with untreated dwarf mice. No thymic effects of either ovGH or ovPRL administration were detected on the normal +/? counterparts. However, ovPRL administration resulted in a significant increase in the number and function of antigen-specific peripheral T cells in both immunized dwarf and +/? mice. The adjuvant effects of PRL occurred even though the mice also received complete Freund's adjuvant. These results suggest that neuroendocrine hormones may act in concert in T cell development. GH appears to promote thymocyte proliferation, while PRL appears to decrease thymus size and yet augment the number and function of antigen-specific T cells in the periphery.

AB - DW/J dwarf mice have a defect in their anterior pituitary and are deficient in growth hormone (GH) and prolactin (PRL). These mice have been demonstrated previously to have a deficiency in CD4/CD8 double-positive thymocytes, which could be corrected by treatment of these mice with recombinant human GH. Since PRL has been implicated in T cell function and human GH can interact with the PRL receptor, DW/J dwarf mice were treated with either ovine GH (ovGH) (20 μg/d) or ovine PRL (ovPRL) (20 μg/d). The ovine hormones can only bind their own specific receptors in the mouse. After several weeks of treatment, it was found that these two hormones produced markedly contrasting effects on T cells. Phenotypic analysis of the lymphoid organs was performed by flow cytometry and the functional capability of the peripheral T cells was assessed by immunizing the mice and determining the extent of antigen-specific proliferation of T cells obtained from the draining lymph nodes or by determining splenic mitogen responses. The results indicated that ovGH administration to dwarf mice resulted in significant increases in thymic cellularity yet had little effect on peripheral T cell responses. In contrast, the administration of ovPRL resulted in a further decrease in thymic cellularity when compared with untreated dwarf mice. No thymic effects of either ovGH or ovPRL administration were detected on the normal +/? counterparts. However, ovPRL administration resulted in a significant increase in the number and function of antigen-specific peripheral T cells in both immunized dwarf and +/? mice. The adjuvant effects of PRL occurred even though the mice also received complete Freund's adjuvant. These results suggest that neuroendocrine hormones may act in concert in T cell development. GH appears to promote thymocyte proliferation, while PRL appears to decrease thymus size and yet augment the number and function of antigen-specific T cells in the periphery.

UR - http://www.scopus.com/inward/record.url?scp=0027233903&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=0027233903&partnerID=8YFLogxK

M3 - Article

C2 - 8315380

AN - SCOPUS:0027233903

VL - 178

SP - 231

EP - 236

JO - Journal of Experimental Medicine

JF - Journal of Experimental Medicine

SN - 0022-1007

IS - 1

ER -