Dietary manipulation of macrophage phospholipid classes: Selective increase of dihomogammalinolenic acid

Robert S. Chapkin, Scott D. Somers, Kent L Erickson

Research output: Contribution to journalArticle

30 Citations (Scopus)

Abstract

Because alterations in the dietary content of fatty acids are an important method for modulating macrophage eicosanoid production, we have quantitated the levels of n-6 and n-3 polyunsaturated fatty acids in peritoneal macrophage individual phospholipids from mice fed diets (3 wk) with either safflower oil (SAF), predominantly containing 18:2n-6, borage (BOR) containing 18:2n-6 and 18:3n-6, fish (MFO) containing 20:5n-3 and 22:6n-3, and borage/fish mixture (MIX) containing 18:2n-6, 18:3n-6, 20:5n-3 and 22:6n-3. Dietary n-3 fattya cids were readily incorporated into macrophage phosphatidylcholine (PC), phosphatidylethanolamine (PE), phosphatidylserine (PS) and phosphatidylinositol (PI). The increase in n-3 fatty acid levels was accompanied by a decrease in the absolute levels of 18:2n-6, 20:4n-6 and 22:4n-6 in PC, PE and PS. Interestingly, PI 20:4n-6 levels were not significantly lowered (P>0.05) in MIX and MFO macrophages relative to SAF and BOR. These data demonstrate the unique ability of this phospholipid to selectively maintain its 20:4n-6 levels. In BOR and MIX animals, 20:3n-6 levels were significantly increased (P<0.05) in all phospholipids relative to SAF and MFO. The combination of borage and fish oils (MIX diet) produced the highest 20:3n-6/20:4n-6 ratio in all phospholipids. These data show that the macrophage eicosanoid precursor levels of 20:3n-6, 20:4n-6 and n-3 acids can be selectively manipulated through the use of specific dietary regimens. This is noteworthy because an increase in phospholipid levels of 20:3n-6 and 20:5n-3, while concomitantly reducing 20:4n-6, may have therapeutic potential in treating inflammatory disorders.

Original languageEnglish (US)
Pages (from-to)766-770
Number of pages5
JournalLipids
Volume23
Issue number8
DOIs
StatePublished - Aug 1988

Fingerprint

8,11,14-Eicosatrienoic Acid
Borago
Macrophages
Borago officinalis
Safflower Oil
Phospholipids
phospholipids
macrophages
safflower oil
acids
phosphatidylserines
eicosanoids
Eicosanoids
Phosphatidylserines
phosphatidylinositols
Omega-3 Fatty Acids
phosphatidylethanolamines
Nutrition
Phosphatidylinositols
Phosphatidylcholines

ASJC Scopus subject areas

  • Medicine (miscellaneous)
  • Biochemistry
  • Biochemistry, Genetics and Molecular Biology(all)
  • Food Science
  • Organic Chemistry
  • Cell Biology

Cite this

Dietary manipulation of macrophage phospholipid classes : Selective increase of dihomogammalinolenic acid. / Chapkin, Robert S.; Somers, Scott D.; Erickson, Kent L.

In: Lipids, Vol. 23, No. 8, 08.1988, p. 766-770.

Research output: Contribution to journalArticle

@article{d436c4726ff14a04aa7c73db5d112ccb,
title = "Dietary manipulation of macrophage phospholipid classes: Selective increase of dihomogammalinolenic acid",
abstract = "Because alterations in the dietary content of fatty acids are an important method for modulating macrophage eicosanoid production, we have quantitated the levels of n-6 and n-3 polyunsaturated fatty acids in peritoneal macrophage individual phospholipids from mice fed diets (3 wk) with either safflower oil (SAF), predominantly containing 18:2n-6, borage (BOR) containing 18:2n-6 and 18:3n-6, fish (MFO) containing 20:5n-3 and 22:6n-3, and borage/fish mixture (MIX) containing 18:2n-6, 18:3n-6, 20:5n-3 and 22:6n-3. Dietary n-3 fattya cids were readily incorporated into macrophage phosphatidylcholine (PC), phosphatidylethanolamine (PE), phosphatidylserine (PS) and phosphatidylinositol (PI). The increase in n-3 fatty acid levels was accompanied by a decrease in the absolute levels of 18:2n-6, 20:4n-6 and 22:4n-6 in PC, PE and PS. Interestingly, PI 20:4n-6 levels were not significantly lowered (P>0.05) in MIX and MFO macrophages relative to SAF and BOR. These data demonstrate the unique ability of this phospholipid to selectively maintain its 20:4n-6 levels. In BOR and MIX animals, 20:3n-6 levels were significantly increased (P<0.05) in all phospholipids relative to SAF and MFO. The combination of borage and fish oils (MIX diet) produced the highest 20:3n-6/20:4n-6 ratio in all phospholipids. These data show that the macrophage eicosanoid precursor levels of 20:3n-6, 20:4n-6 and n-3 acids can be selectively manipulated through the use of specific dietary regimens. This is noteworthy because an increase in phospholipid levels of 20:3n-6 and 20:5n-3, while concomitantly reducing 20:4n-6, may have therapeutic potential in treating inflammatory disorders.",
author = "Chapkin, {Robert S.} and Somers, {Scott D.} and Erickson, {Kent L}",
year = "1988",
month = "8",
doi = "10.1007/BF02536219",
language = "English (US)",
volume = "23",
pages = "766--770",
journal = "Lipids",
issn = "0024-4201",
publisher = "Springer Verlag",
number = "8",

}

TY - JOUR

T1 - Dietary manipulation of macrophage phospholipid classes

T2 - Selective increase of dihomogammalinolenic acid

AU - Chapkin, Robert S.

AU - Somers, Scott D.

AU - Erickson, Kent L

PY - 1988/8

Y1 - 1988/8

N2 - Because alterations in the dietary content of fatty acids are an important method for modulating macrophage eicosanoid production, we have quantitated the levels of n-6 and n-3 polyunsaturated fatty acids in peritoneal macrophage individual phospholipids from mice fed diets (3 wk) with either safflower oil (SAF), predominantly containing 18:2n-6, borage (BOR) containing 18:2n-6 and 18:3n-6, fish (MFO) containing 20:5n-3 and 22:6n-3, and borage/fish mixture (MIX) containing 18:2n-6, 18:3n-6, 20:5n-3 and 22:6n-3. Dietary n-3 fattya cids were readily incorporated into macrophage phosphatidylcholine (PC), phosphatidylethanolamine (PE), phosphatidylserine (PS) and phosphatidylinositol (PI). The increase in n-3 fatty acid levels was accompanied by a decrease in the absolute levels of 18:2n-6, 20:4n-6 and 22:4n-6 in PC, PE and PS. Interestingly, PI 20:4n-6 levels were not significantly lowered (P>0.05) in MIX and MFO macrophages relative to SAF and BOR. These data demonstrate the unique ability of this phospholipid to selectively maintain its 20:4n-6 levels. In BOR and MIX animals, 20:3n-6 levels were significantly increased (P<0.05) in all phospholipids relative to SAF and MFO. The combination of borage and fish oils (MIX diet) produced the highest 20:3n-6/20:4n-6 ratio in all phospholipids. These data show that the macrophage eicosanoid precursor levels of 20:3n-6, 20:4n-6 and n-3 acids can be selectively manipulated through the use of specific dietary regimens. This is noteworthy because an increase in phospholipid levels of 20:3n-6 and 20:5n-3, while concomitantly reducing 20:4n-6, may have therapeutic potential in treating inflammatory disorders.

AB - Because alterations in the dietary content of fatty acids are an important method for modulating macrophage eicosanoid production, we have quantitated the levels of n-6 and n-3 polyunsaturated fatty acids in peritoneal macrophage individual phospholipids from mice fed diets (3 wk) with either safflower oil (SAF), predominantly containing 18:2n-6, borage (BOR) containing 18:2n-6 and 18:3n-6, fish (MFO) containing 20:5n-3 and 22:6n-3, and borage/fish mixture (MIX) containing 18:2n-6, 18:3n-6, 20:5n-3 and 22:6n-3. Dietary n-3 fattya cids were readily incorporated into macrophage phosphatidylcholine (PC), phosphatidylethanolamine (PE), phosphatidylserine (PS) and phosphatidylinositol (PI). The increase in n-3 fatty acid levels was accompanied by a decrease in the absolute levels of 18:2n-6, 20:4n-6 and 22:4n-6 in PC, PE and PS. Interestingly, PI 20:4n-6 levels were not significantly lowered (P>0.05) in MIX and MFO macrophages relative to SAF and BOR. These data demonstrate the unique ability of this phospholipid to selectively maintain its 20:4n-6 levels. In BOR and MIX animals, 20:3n-6 levels were significantly increased (P<0.05) in all phospholipids relative to SAF and MFO. The combination of borage and fish oils (MIX diet) produced the highest 20:3n-6/20:4n-6 ratio in all phospholipids. These data show that the macrophage eicosanoid precursor levels of 20:3n-6, 20:4n-6 and n-3 acids can be selectively manipulated through the use of specific dietary regimens. This is noteworthy because an increase in phospholipid levels of 20:3n-6 and 20:5n-3, while concomitantly reducing 20:4n-6, may have therapeutic potential in treating inflammatory disorders.

UR - http://www.scopus.com/inward/record.url?scp=0023733759&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=0023733759&partnerID=8YFLogxK

U2 - 10.1007/BF02536219

DO - 10.1007/BF02536219

M3 - Article

C2 - 3185109

AN - SCOPUS:0023733759

VL - 23

SP - 766

EP - 770

JO - Lipids

JF - Lipids

SN - 0024-4201

IS - 8

ER -