Dexmedetomidine attenuates ischemia/ reperfusion-induced myocardial inflammation and apoptosis through inhibiting endoplasmic reticulum stress signaling

Yu Fan Yang, Hui Wang, Nan Song, Ya Hui Jiang, Jun Zhang, Xiao Wen Meng, Xiao Mei Feng, Hong Liu, Ke Peng, Fu Hai Ji

Research output: Contribution to journalArticlepeer-review

2 Scopus citations


Background: Endoplasmic reticulum stress (ERS)-mediated myocardial inflammation and apoptosis plays an important role in myocardial ischemia/reperfusion (I/R) injury. Dexmedetomidine has been used clinically with sedative, analgesic, and anti-inflammatory properties. This study aimed to determine the effects of dexmedetomidine pretreatment on inflammation, apoptosis, and the expression of ERS signaling during myocardial I/R injury. Methods: Rats underwent myocardial ischemia for 30 min and reperfusion for 6 h, and H9c2 cardiomyocytes were subjected to oxygen-glucose deprivation/reoxygenation (OGD/R) injury (OGD for 12 h and reoxygenation for 3 h). Dexmedetomidine was administered prior to myocardial ischemia in rats or ODG in cardiomyocytes. In addition, the α2-adrenergic receptor antagonist (yohimbine) or the PERK activator (CCT020312) was given prior to dexmedetomidine treatment. Results: Dexmedetomidine pretreatment decreased serum levels of cardiac troponin I, reduced myocardial infarct size, alleviated histological structure damage, and improved left ventricular function following myocardial I/R injury in rats. In addition, dexmedetomidine pretreatment increased cell viability and reduced cytotoxicity following OGD/R injury in cardiomyocytes. Mechanistically, the cardioprotection offered by dexmedetomidine was mediated via the inhibition of inflammation and apoptosis through downregulating the expression of the ERS signaling pathway, including glucose-regulated protein 78 (GRP78), protein kinase R-like endoplasmic reticulum kinase (PERK), C/EBP homologous protein (CHOP), inositol-requiring protein 1 (IRE1), and activating transcription factor 6 (ATF6). Conversely, the protective effects of dexmedetomidine were diminished by blocking the α2 adrenergic receptors with yohimbine or promoting PERK phosphorylation with CCT020312. Conclusion: Dexmedetomidine pretreatment protects the hearts against I/R injury via inhibiting inflammation and apoptosis through downregulation of the ERS signaling pathway. Future clinical studies are needed to confirm the cardioprotective effects of dexmedetomidine in patients at risk of myocardial I/R injury.

Original languageEnglish (US)
Pages (from-to)1217-1233
Number of pages17
JournalJournal of Inflammation Research
StatePublished - 2021
Externally publishedYes


  • Apoptosis
  • Dexmedetomidine
  • Endoplasmic reticulum stress
  • Inflammation
  • Myocardial ischemia/reperfusion injury

ASJC Scopus subject areas

  • Immunology and Allergy
  • Immunology


Dive into the research topics of 'Dexmedetomidine attenuates ischemia/ reperfusion-induced myocardial inflammation and apoptosis through inhibiting endoplasmic reticulum stress signaling'. Together they form a unique fingerprint.

Cite this