Development and validation of a multiplex reverse transcription quantitative PCR (RT-qPCR) assay for the rapid detection of Citrus tristeza virus, Citrus psorosis virus, and Citrus leaf blotch virus

Fatima Osman, Emir Hodzic, Sun Jung Kwon, Jinbo Wang, Georgios Vidalakis

Research output: Contribution to journalArticle

15 Citations (Scopus)

Abstract

A single real-time multiplex reverse transcription quantitative polymerase chain reaction (RT-qPCR) assay for the simultaneous detection of Citrus tristeza virus (CTV), Citrus psorosis virus (CPsV), and Citrus leaf blotch virus (CLBV) was developed and validated using three different fluorescently labeled minor groove binding qPCR probes. To increase the detection reliability, coat protein (CP) genes from large number of different isolates of CTV, CPsV and CLBV were sequenced and a multiple sequence alignment was generated with corresponding CP sequences from the GenBank and a robust multiplex RT-qPCR assay was designed. The capacity of the multiplex RT-qPCR assay in detecting the viruses was compared to singleplex RT-qPCR designed specifically for each virus and was assessed using multiple virus isolates from diverse geographical regions and citrus species as well as graft-inoculated citrus plants infected with various combination of the three viruses. No significant difference in detection limits was found and specificity was not affected by the inclusion of the three assays in a multiplex RT-qPCR reaction. Comparison of the viral load for each virus using singleplex and multiplex RT-qPCR assays, revealed no significant differences between the two assays in virus detection. No significant difference in Cq values was detected when using one-step and two-step multiplex RT-qPCR detection formats. Optimizing the RNA extraction technique for citrus tissues and testing the quality of the extracted RNA using RT-qPCR targeting the cytochrome oxidase citrus gene as an RNA specific internal control proved to generate better diagnostic assays. Results showed that the developed multiplex RT-qPCR can streamline viruses testing of citrus nursery stock by replacing three separate singleplex assays, thus reducing time and labor while retaining the same sensitivity and specificity. The three targeted RNA viruses are regulated pathogens for California's mandatory "Section 3701: Citrus Nursery Stock Pest Cleanliness Program". Adopting a compatible multiplex RT-qPCR testing protocol for these viruses as well as other RNA and DNA regulated pathogens will provide a valuable alternative tool for virus detection and efficient program implementation.

Original languageEnglish (US)
Pages (from-to)64-75
Number of pages12
JournalJournal of Virological Methods
Volume220
DOIs
StatePublished - Aug 1 2015

Fingerprint

Citrus
Reverse Transcription
Viruses
Polymerase Chain Reaction
RNA
Nurseries
Capsid Proteins
Sequence Alignment
RNA Viruses
Nucleic Acid Databases
Electron Transport Complex IV
Viral Load
Genes
Limit of Detection

Keywords

  • Budwood
  • Citrus germplasm
  • Citrus nursery certification
  • Citrus viruses
  • COX internal control
  • Graft-transmissible citrus pathogens

ASJC Scopus subject areas

  • Virology
  • Medicine(all)

Cite this

@article{98106adca4e345a0981ad9265834c384,
title = "Development and validation of a multiplex reverse transcription quantitative PCR (RT-qPCR) assay for the rapid detection of Citrus tristeza virus, Citrus psorosis virus, and Citrus leaf blotch virus",
abstract = "A single real-time multiplex reverse transcription quantitative polymerase chain reaction (RT-qPCR) assay for the simultaneous detection of Citrus tristeza virus (CTV), Citrus psorosis virus (CPsV), and Citrus leaf blotch virus (CLBV) was developed and validated using three different fluorescently labeled minor groove binding qPCR probes. To increase the detection reliability, coat protein (CP) genes from large number of different isolates of CTV, CPsV and CLBV were sequenced and a multiple sequence alignment was generated with corresponding CP sequences from the GenBank and a robust multiplex RT-qPCR assay was designed. The capacity of the multiplex RT-qPCR assay in detecting the viruses was compared to singleplex RT-qPCR designed specifically for each virus and was assessed using multiple virus isolates from diverse geographical regions and citrus species as well as graft-inoculated citrus plants infected with various combination of the three viruses. No significant difference in detection limits was found and specificity was not affected by the inclusion of the three assays in a multiplex RT-qPCR reaction. Comparison of the viral load for each virus using singleplex and multiplex RT-qPCR assays, revealed no significant differences between the two assays in virus detection. No significant difference in Cq values was detected when using one-step and two-step multiplex RT-qPCR detection formats. Optimizing the RNA extraction technique for citrus tissues and testing the quality of the extracted RNA using RT-qPCR targeting the cytochrome oxidase citrus gene as an RNA specific internal control proved to generate better diagnostic assays. Results showed that the developed multiplex RT-qPCR can streamline viruses testing of citrus nursery stock by replacing three separate singleplex assays, thus reducing time and labor while retaining the same sensitivity and specificity. The three targeted RNA viruses are regulated pathogens for California's mandatory {"}Section 3701: Citrus Nursery Stock Pest Cleanliness Program{"}. Adopting a compatible multiplex RT-qPCR testing protocol for these viruses as well as other RNA and DNA regulated pathogens will provide a valuable alternative tool for virus detection and efficient program implementation.",
keywords = "Budwood, Citrus germplasm, Citrus nursery certification, Citrus viruses, COX internal control, Graft-transmissible citrus pathogens",
author = "Fatima Osman and Emir Hodzic and Kwon, {Sun Jung} and Jinbo Wang and Georgios Vidalakis",
year = "2015",
month = "8",
day = "1",
doi = "10.1016/j.jviromet.2015.04.013",
language = "English (US)",
volume = "220",
pages = "64--75",
journal = "Journal of Virological Methods",
issn = "0166-0934",
publisher = "Elsevier",

}

TY - JOUR

T1 - Development and validation of a multiplex reverse transcription quantitative PCR (RT-qPCR) assay for the rapid detection of Citrus tristeza virus, Citrus psorosis virus, and Citrus leaf blotch virus

AU - Osman, Fatima

AU - Hodzic, Emir

AU - Kwon, Sun Jung

AU - Wang, Jinbo

AU - Vidalakis, Georgios

PY - 2015/8/1

Y1 - 2015/8/1

N2 - A single real-time multiplex reverse transcription quantitative polymerase chain reaction (RT-qPCR) assay for the simultaneous detection of Citrus tristeza virus (CTV), Citrus psorosis virus (CPsV), and Citrus leaf blotch virus (CLBV) was developed and validated using three different fluorescently labeled minor groove binding qPCR probes. To increase the detection reliability, coat protein (CP) genes from large number of different isolates of CTV, CPsV and CLBV were sequenced and a multiple sequence alignment was generated with corresponding CP sequences from the GenBank and a robust multiplex RT-qPCR assay was designed. The capacity of the multiplex RT-qPCR assay in detecting the viruses was compared to singleplex RT-qPCR designed specifically for each virus and was assessed using multiple virus isolates from diverse geographical regions and citrus species as well as graft-inoculated citrus plants infected with various combination of the three viruses. No significant difference in detection limits was found and specificity was not affected by the inclusion of the three assays in a multiplex RT-qPCR reaction. Comparison of the viral load for each virus using singleplex and multiplex RT-qPCR assays, revealed no significant differences between the two assays in virus detection. No significant difference in Cq values was detected when using one-step and two-step multiplex RT-qPCR detection formats. Optimizing the RNA extraction technique for citrus tissues and testing the quality of the extracted RNA using RT-qPCR targeting the cytochrome oxidase citrus gene as an RNA specific internal control proved to generate better diagnostic assays. Results showed that the developed multiplex RT-qPCR can streamline viruses testing of citrus nursery stock by replacing three separate singleplex assays, thus reducing time and labor while retaining the same sensitivity and specificity. The three targeted RNA viruses are regulated pathogens for California's mandatory "Section 3701: Citrus Nursery Stock Pest Cleanliness Program". Adopting a compatible multiplex RT-qPCR testing protocol for these viruses as well as other RNA and DNA regulated pathogens will provide a valuable alternative tool for virus detection and efficient program implementation.

AB - A single real-time multiplex reverse transcription quantitative polymerase chain reaction (RT-qPCR) assay for the simultaneous detection of Citrus tristeza virus (CTV), Citrus psorosis virus (CPsV), and Citrus leaf blotch virus (CLBV) was developed and validated using three different fluorescently labeled minor groove binding qPCR probes. To increase the detection reliability, coat protein (CP) genes from large number of different isolates of CTV, CPsV and CLBV were sequenced and a multiple sequence alignment was generated with corresponding CP sequences from the GenBank and a robust multiplex RT-qPCR assay was designed. The capacity of the multiplex RT-qPCR assay in detecting the viruses was compared to singleplex RT-qPCR designed specifically for each virus and was assessed using multiple virus isolates from diverse geographical regions and citrus species as well as graft-inoculated citrus plants infected with various combination of the three viruses. No significant difference in detection limits was found and specificity was not affected by the inclusion of the three assays in a multiplex RT-qPCR reaction. Comparison of the viral load for each virus using singleplex and multiplex RT-qPCR assays, revealed no significant differences between the two assays in virus detection. No significant difference in Cq values was detected when using one-step and two-step multiplex RT-qPCR detection formats. Optimizing the RNA extraction technique for citrus tissues and testing the quality of the extracted RNA using RT-qPCR targeting the cytochrome oxidase citrus gene as an RNA specific internal control proved to generate better diagnostic assays. Results showed that the developed multiplex RT-qPCR can streamline viruses testing of citrus nursery stock by replacing three separate singleplex assays, thus reducing time and labor while retaining the same sensitivity and specificity. The three targeted RNA viruses are regulated pathogens for California's mandatory "Section 3701: Citrus Nursery Stock Pest Cleanliness Program". Adopting a compatible multiplex RT-qPCR testing protocol for these viruses as well as other RNA and DNA regulated pathogens will provide a valuable alternative tool for virus detection and efficient program implementation.

KW - Budwood

KW - Citrus germplasm

KW - Citrus nursery certification

KW - Citrus viruses

KW - COX internal control

KW - Graft-transmissible citrus pathogens

UR - http://www.scopus.com/inward/record.url?scp=84928714930&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=84928714930&partnerID=8YFLogxK

U2 - 10.1016/j.jviromet.2015.04.013

DO - 10.1016/j.jviromet.2015.04.013

M3 - Article

C2 - 25907469

AN - SCOPUS:84928714930

VL - 220

SP - 64

EP - 75

JO - Journal of Virological Methods

JF - Journal of Virological Methods

SN - 0166-0934

ER -