TY - JOUR
T1 - Detection of myxobolus cerebralis in rainbow trout and oligochaete tissues by using a nonradioactive in situ hybridization (Ish) protocol
AU - Baxa, Dolores
AU - Andree, K. B.
AU - McDowell, T. S.
AU - Hedrick, Ronald
PY - 1998/1/1
Y1 - 1998/1/1
N2 - A nonradioactive in situ hybridization (ISH) protocol was developed to detect Myxobolus cerebralis, the causative organism of whirling disease, in its primary host, rainbow trout Oncorhynchus mykiss, and in its alternate oligochaete host, Tubifex tubifex. A cocktail of three oligonucleotide primers (derived from the small subunit ribosomal DNA sequence) directed at target sequences of the parasite DNA was tailed at the 39 end with digoxigenin-labeled deoxyuridine triphosphate (DIG-dUTP). Labeled probes were hybridized to parasite DNA present in deparaffinized tissue sections from infected trout and oligochaetes. The bound probes were visualized after modifications of existing ISH protocols. By using the new ISH procedure, the parasite was found in target tissues of subclinically and clinically infected fish and tubificid oligochaetes after exposures of these hosts to triactinomyxons and mature spores, respectively. The probe did not bind with salmonid tissues infected with two other myxosporean parasites, Ceratomyxa shasta or the PKX organism, or to a Myxobolus sp. infecting the cartilage of plain sculpin Myoxocephalus jaok. These initial results indicate that ISH is an effective and specific test for detecting Myxobolus cerebralis in its fish and oligochaete hosts.
AB - A nonradioactive in situ hybridization (ISH) protocol was developed to detect Myxobolus cerebralis, the causative organism of whirling disease, in its primary host, rainbow trout Oncorhynchus mykiss, and in its alternate oligochaete host, Tubifex tubifex. A cocktail of three oligonucleotide primers (derived from the small subunit ribosomal DNA sequence) directed at target sequences of the parasite DNA was tailed at the 39 end with digoxigenin-labeled deoxyuridine triphosphate (DIG-dUTP). Labeled probes were hybridized to parasite DNA present in deparaffinized tissue sections from infected trout and oligochaetes. The bound probes were visualized after modifications of existing ISH protocols. By using the new ISH procedure, the parasite was found in target tissues of subclinically and clinically infected fish and tubificid oligochaetes after exposures of these hosts to triactinomyxons and mature spores, respectively. The probe did not bind with salmonid tissues infected with two other myxosporean parasites, Ceratomyxa shasta or the PKX organism, or to a Myxobolus sp. infecting the cartilage of plain sculpin Myoxocephalus jaok. These initial results indicate that ISH is an effective and specific test for detecting Myxobolus cerebralis in its fish and oligochaete hosts.
UR - http://www.scopus.com/inward/record.url?scp=0032451723&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=0032451723&partnerID=8YFLogxK
U2 - 10.1577/1548-8667(1998)010<0338:DOMCIR>2.0.CO;2
DO - 10.1577/1548-8667(1998)010<0338:DOMCIR>2.0.CO;2
M3 - Article
AN - SCOPUS:0032451723
VL - 10
SP - 338
EP - 347
JO - Journal of Aquatic Animal Health
JF - Journal of Aquatic Animal Health
SN - 0899-7659
IS - 4
ER -