Delineation of joint molecule resolution pathways in meiosis identifies a crossover-specific resolvase

Kseniya Zakharyevich, Shangming Tang, Yunmei Ma, Neil Hunter

Research output: Contribution to journalArticle

144 Scopus citations

Abstract

At the final step of homologous recombination, Holliday junction-containing joint molecules (JMs) are resolved to form crossover or noncrossover products. The enzymes responsible for JM resolution in vivo remain uncertain, but three distinct endonucleases capable of resolving JMs in vitro have been identified: Mus81-Mms4(EME1), Slx1-Slx4(BTBD12), and Yen1(GEN1). Using physical monitoring of recombination during budding yeast meiosis, we show that all three endonucleases are capable of promoting JM resolution in vivo. However, in mms4 slx4 yen1 triple mutants, JM resolution and crossing over occur efficiently. Paradoxically, crossing over in this background is strongly dependent on the Blooms helicase ortholog Sgs1, a component of a well-characterized anticrossover activity. Sgs1-dependent crossing over, but not JM resolution per se, also requires XPG family nuclease Exo1 and the MutLγ complex Mlh1-Mlh3. Thus, Sgs1, Exo1, and MutLγ together define a previously undescribed meiotic JM resolution pathway that produces the majority of crossovers in budding yeast and, by inference, in mammals.

Original languageEnglish (US)
Pages (from-to)334-347
Number of pages14
JournalCell
Volume149
Issue number2
DOIs
StatePublished - Apr 13 2012

ASJC Scopus subject areas

  • Biochemistry, Genetics and Molecular Biology(all)

Fingerprint Dive into the research topics of 'Delineation of joint molecule resolution pathways in meiosis identifies a crossover-specific resolvase'. Together they form a unique fingerprint.

  • Cite this