TY - JOUR
T1 - Defective removal of DNA cross-links in a repair-deficient mutant of Chinese hamster cells
AU - Meyn, R. E.
AU - Jenkins, S. F.
AU - Thompson, L. H.
PY - 1982
Y1 - 1982
N2 - To further understand the relationships between DNA damage, DNA repair, and cellular end points such as survival and mutation, the repair capacity of a DNA repair-deficient mutant (strain UV-20) of Chinese hamster ovary cells was characterized in response to DNA cross-linking agents. This mutant, previously shown to be hypersensitive to killing by both ultraviolet light and the cross-linking agent mitomycin C, was also found to be extremely sensitive to cis-diamminedichloroplatinum, another DNA cross-linking agent. The efficiency of DNA cross-link removal after treatment with mitomycin C or cis-diamminedichloroplatinum was measured using the technique of alkaline elution and compared in wild-type Chinese hamster ovary cells and strain UV-20. Wild-type cells removed 80 or 95% of the cross-links within 24 hr after treatment with cis-diamminedichloroplatinum or mitomycin C, respectively. In contrast, UV-20 cells, which were equally as susceptible to cross-link damage as were wild-type cells, removed only a small proportion of the cross-links made by either agent. These results emphasize the importance of DNA repair processes in modulating the cytotoxic effects of chemicals that produce DNA cross-link damage and suggest that cross-link repair in Chinese hamster ovary cells is controlled by a pathway that also repairs damage from ultraviolet radiation.
AB - To further understand the relationships between DNA damage, DNA repair, and cellular end points such as survival and mutation, the repair capacity of a DNA repair-deficient mutant (strain UV-20) of Chinese hamster ovary cells was characterized in response to DNA cross-linking agents. This mutant, previously shown to be hypersensitive to killing by both ultraviolet light and the cross-linking agent mitomycin C, was also found to be extremely sensitive to cis-diamminedichloroplatinum, another DNA cross-linking agent. The efficiency of DNA cross-link removal after treatment with mitomycin C or cis-diamminedichloroplatinum was measured using the technique of alkaline elution and compared in wild-type Chinese hamster ovary cells and strain UV-20. Wild-type cells removed 80 or 95% of the cross-links within 24 hr after treatment with cis-diamminedichloroplatinum or mitomycin C, respectively. In contrast, UV-20 cells, which were equally as susceptible to cross-link damage as were wild-type cells, removed only a small proportion of the cross-links made by either agent. These results emphasize the importance of DNA repair processes in modulating the cytotoxic effects of chemicals that produce DNA cross-link damage and suggest that cross-link repair in Chinese hamster ovary cells is controlled by a pathway that also repairs damage from ultraviolet radiation.
UR - http://www.scopus.com/inward/record.url?scp=0019986881&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=0019986881&partnerID=8YFLogxK
M3 - Article
C2 - 6807537
AN - SCOPUS:0019986881
VL - 42
SP - 3106
EP - 3110
JO - Journal of Cancer Research
JF - Journal of Cancer Research
SN - 0099-7013
IS - 8
ER -