Dealing with heterogeneity of treatment effects: Is the literature up to the challenge?

Nicole B. Gabler, Naihua Duan, Diana Liao, Joann G. Elmore, Theodore G. Ganiats, Richard L Kravitz

Research output: Contribution to journalArticle

60 Citations (Scopus)

Abstract

Background: Some patients will experience more or less benefit from treatment than the averages reported from clinical trials; such variation in therapeutic outcome is termed heterogeneity of treatment effects (HTE). Identifying HTE is necessary to individualize treatment. The degree to which heterogeneity is sought and analyzed correctly in the general medical literature is unknown. We undertook this literature sample to track the use of HTE analyses over time, examine the appropriateness of the statistical methods used, and explore the predictors of such analyses. Methods: Articles were selected through a probability sample of randomized controlled trials (RCTs) published in Annals of Internal Medicine, BMJ, JAMA, The Lancet, and NEJM during odd numbered months of 1994, 1999, and 2004. RCTs were independently reviewed and coded by two abstractors, with adjudication by a third. Studies were classified as reporting: (1) HTE analysis, utilizing a formal test for heterogeneity or treatment-by-covariate interaction, (2) subgroup analysis only, involving no formal test for heterogeneity or interaction; or (3) neither. Chi-square tests and multiple logistic regression were used to identify variables associated with HTE reporting. Results: 319 studies were included. Ninety-two (29%) reported HTE analysis; another 88 (28%) reported subgroup analysis only, without examining HTE formally. Major covariates examined included individual risk factors associated with prognosis, responsiveness to treatment, or vulnerability to adverse effects of treatment (56%); gender (30%); age (29%); study site or center (29%); and race/ethnicity (7%). Journal of publication and sample size were significant independent predictors of HTE analysis (p < 0.05 and p < 0.001, respectively). Conclusion: HTE is frequently ignored or incorrectly analyzed. An iterative process of exploratory analysis followed by confirmatory HTE analysis will generate the data needed to facilitate an individualized approach to evidence-based medicine.

Original languageEnglish (US)
Article number43
JournalTrials
Volume10
DOIs
StatePublished - Jun 19 2009

Fingerprint

Therapeutics
Randomized Controlled Trials
Sampling Studies
Evidence-Based Medicine
Chi-Square Distribution
Internal Medicine
Sample Size
Publications
Logistic Models
Clinical Trials

ASJC Scopus subject areas

  • Medicine (miscellaneous)
  • Pharmacology (medical)

Cite this

Dealing with heterogeneity of treatment effects : Is the literature up to the challenge? / Gabler, Nicole B.; Duan, Naihua; Liao, Diana; Elmore, Joann G.; Ganiats, Theodore G.; Kravitz, Richard L.

In: Trials, Vol. 10, 43, 19.06.2009.

Research output: Contribution to journalArticle

Gabler, Nicole B. ; Duan, Naihua ; Liao, Diana ; Elmore, Joann G. ; Ganiats, Theodore G. ; Kravitz, Richard L. / Dealing with heterogeneity of treatment effects : Is the literature up to the challenge?. In: Trials. 2009 ; Vol. 10.
@article{868578a5ba174213a0d3d5d98b31f94c,
title = "Dealing with heterogeneity of treatment effects: Is the literature up to the challenge?",
abstract = "Background: Some patients will experience more or less benefit from treatment than the averages reported from clinical trials; such variation in therapeutic outcome is termed heterogeneity of treatment effects (HTE). Identifying HTE is necessary to individualize treatment. The degree to which heterogeneity is sought and analyzed correctly in the general medical literature is unknown. We undertook this literature sample to track the use of HTE analyses over time, examine the appropriateness of the statistical methods used, and explore the predictors of such analyses. Methods: Articles were selected through a probability sample of randomized controlled trials (RCTs) published in Annals of Internal Medicine, BMJ, JAMA, The Lancet, and NEJM during odd numbered months of 1994, 1999, and 2004. RCTs were independently reviewed and coded by two abstractors, with adjudication by a third. Studies were classified as reporting: (1) HTE analysis, utilizing a formal test for heterogeneity or treatment-by-covariate interaction, (2) subgroup analysis only, involving no formal test for heterogeneity or interaction; or (3) neither. Chi-square tests and multiple logistic regression were used to identify variables associated with HTE reporting. Results: 319 studies were included. Ninety-two (29{\%}) reported HTE analysis; another 88 (28{\%}) reported subgroup analysis only, without examining HTE formally. Major covariates examined included individual risk factors associated with prognosis, responsiveness to treatment, or vulnerability to adverse effects of treatment (56{\%}); gender (30{\%}); age (29{\%}); study site or center (29{\%}); and race/ethnicity (7{\%}). Journal of publication and sample size were significant independent predictors of HTE analysis (p < 0.05 and p < 0.001, respectively). Conclusion: HTE is frequently ignored or incorrectly analyzed. An iterative process of exploratory analysis followed by confirmatory HTE analysis will generate the data needed to facilitate an individualized approach to evidence-based medicine.",
author = "Gabler, {Nicole B.} and Naihua Duan and Diana Liao and Elmore, {Joann G.} and Ganiats, {Theodore G.} and Kravitz, {Richard L}",
year = "2009",
month = "6",
day = "19",
doi = "10.1186/1745-6215-10-43",
language = "English (US)",
volume = "10",
journal = "Trials",
issn = "1745-6215",
publisher = "BioMed Central",

}

TY - JOUR

T1 - Dealing with heterogeneity of treatment effects

T2 - Is the literature up to the challenge?

AU - Gabler, Nicole B.

AU - Duan, Naihua

AU - Liao, Diana

AU - Elmore, Joann G.

AU - Ganiats, Theodore G.

AU - Kravitz, Richard L

PY - 2009/6/19

Y1 - 2009/6/19

N2 - Background: Some patients will experience more or less benefit from treatment than the averages reported from clinical trials; such variation in therapeutic outcome is termed heterogeneity of treatment effects (HTE). Identifying HTE is necessary to individualize treatment. The degree to which heterogeneity is sought and analyzed correctly in the general medical literature is unknown. We undertook this literature sample to track the use of HTE analyses over time, examine the appropriateness of the statistical methods used, and explore the predictors of such analyses. Methods: Articles were selected through a probability sample of randomized controlled trials (RCTs) published in Annals of Internal Medicine, BMJ, JAMA, The Lancet, and NEJM during odd numbered months of 1994, 1999, and 2004. RCTs were independently reviewed and coded by two abstractors, with adjudication by a third. Studies were classified as reporting: (1) HTE analysis, utilizing a formal test for heterogeneity or treatment-by-covariate interaction, (2) subgroup analysis only, involving no formal test for heterogeneity or interaction; or (3) neither. Chi-square tests and multiple logistic regression were used to identify variables associated with HTE reporting. Results: 319 studies were included. Ninety-two (29%) reported HTE analysis; another 88 (28%) reported subgroup analysis only, without examining HTE formally. Major covariates examined included individual risk factors associated with prognosis, responsiveness to treatment, or vulnerability to adverse effects of treatment (56%); gender (30%); age (29%); study site or center (29%); and race/ethnicity (7%). Journal of publication and sample size were significant independent predictors of HTE analysis (p < 0.05 and p < 0.001, respectively). Conclusion: HTE is frequently ignored or incorrectly analyzed. An iterative process of exploratory analysis followed by confirmatory HTE analysis will generate the data needed to facilitate an individualized approach to evidence-based medicine.

AB - Background: Some patients will experience more or less benefit from treatment than the averages reported from clinical trials; such variation in therapeutic outcome is termed heterogeneity of treatment effects (HTE). Identifying HTE is necessary to individualize treatment. The degree to which heterogeneity is sought and analyzed correctly in the general medical literature is unknown. We undertook this literature sample to track the use of HTE analyses over time, examine the appropriateness of the statistical methods used, and explore the predictors of such analyses. Methods: Articles were selected through a probability sample of randomized controlled trials (RCTs) published in Annals of Internal Medicine, BMJ, JAMA, The Lancet, and NEJM during odd numbered months of 1994, 1999, and 2004. RCTs were independently reviewed and coded by two abstractors, with adjudication by a third. Studies were classified as reporting: (1) HTE analysis, utilizing a formal test for heterogeneity or treatment-by-covariate interaction, (2) subgroup analysis only, involving no formal test for heterogeneity or interaction; or (3) neither. Chi-square tests and multiple logistic regression were used to identify variables associated with HTE reporting. Results: 319 studies were included. Ninety-two (29%) reported HTE analysis; another 88 (28%) reported subgroup analysis only, without examining HTE formally. Major covariates examined included individual risk factors associated with prognosis, responsiveness to treatment, or vulnerability to adverse effects of treatment (56%); gender (30%); age (29%); study site or center (29%); and race/ethnicity (7%). Journal of publication and sample size were significant independent predictors of HTE analysis (p < 0.05 and p < 0.001, respectively). Conclusion: HTE is frequently ignored or incorrectly analyzed. An iterative process of exploratory analysis followed by confirmatory HTE analysis will generate the data needed to facilitate an individualized approach to evidence-based medicine.

UR - http://www.scopus.com/inward/record.url?scp=67650763698&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=67650763698&partnerID=8YFLogxK

U2 - 10.1186/1745-6215-10-43

DO - 10.1186/1745-6215-10-43

M3 - Article

C2 - 19545379

AN - SCOPUS:67650763698

VL - 10

JO - Trials

JF - Trials

SN - 1745-6215

M1 - 43

ER -