DdcMD: A fully GPU-accelerated molecular dynamics program for the Martini force field

Xiaohua Zhang, Shiv Sundram, Tomas Oppelstrup, Sara I.L. Kokkila-Schumacher, Timothy S. Carpenter, Helgi I. Ingólfsson, Frederick H. Streitz, Felice C. Lightstone, James N. Glosli

Research output: Contribution to journalArticlepeer-review

2 Scopus citations

Abstract

We have implemented the Martini force field within Lawrence Livermore National Laboratory's molecular dynamics program, ddcMD. The program is extended to a heterogeneous programming model so that it can exploit graphics processing unit (GPU) accelerators. In addition to the Martini force field being ported to the GPU, the entire integration step, including thermostat, barostat, and constraint solver, is ported as well, which speeds up the simulations to 278-fold using one GPU vs one central processing unit (CPU) core. A benchmark study is performed with several test cases, comparing ddcMD and GROMACS Martini simulations. The average performance of ddcMD for a protein-lipid simulation system of 136k particles achieves 1.04 μs/day on one NVIDIA V100 GPU and aggregates 6.19 μs/day on one Summit node with six GPUs. The GPU implementation in ddcMD offloads all computations to the GPU and only requires one CPU core per simulation to manage the inputs and outputs, freeing up remaining CPU resources on the compute node for alternative tasks often required in complex simulation campaigns. The ddcMD code has been made open source and is available on GitHub at https://github.com/LLNL/ddcMD.

Original languageEnglish (US)
Article number045103
JournalJournal of Chemical Physics
Volume153
Issue number4
DOIs
StatePublished - Jul 28 2020
Externally publishedYes

ASJC Scopus subject areas

  • Physics and Astronomy(all)
  • Physical and Theoretical Chemistry

Fingerprint Dive into the research topics of 'DdcMD: A fully GPU-accelerated molecular dynamics program for the Martini force field'. Together they form a unique fingerprint.

Cite this