Data Descriptor

An open resource for transdiagnostic research in pediatric mental health and learning disorders

Lindsay M. Alexander, Jasmine Escalera, Lei Ai, Charissa Andreotti, Karina Febre, Alexander Mangone, Natan Vega-Potler, Nicolas Langer, Alexis Alexander, Meagan Kovacs, Shannon Litke, Bridget O'Hagan, Jennifer Andersen, Batya Bronstein, Anastasia Bui, Marijayne Bushey, Henry Butler, Victoria Castagna, Nicolas Camacho, Elisha Chan & 47 others Danielle Citera, Jon Clucas, Samantha Cohen, Sarah Dufek, Megan Eaves, Brian Fradera, Judith Gardner, Natalie Grant-Villegas, Gabriella Green, Camille Gregory, Emily Hart, Shana Harris, Megan Horton, Danielle Kahn, Katherine Kabotyanski, Bernard Karmel, Simon P. Kelly, Kayla Kleinman, Bonhwang Koo, Eliza Kramer, Elizabeth Lennon, Catherine Lord, Ginny Mantello, Amy Margolis, Kathleen R. Merikangas, Judith Milham, Giuseppe Minniti, Rebecca Neuhaus, Alexandra Levine, Yael Osman, Lucas C. Parra, Ken R. Pugh, Amy Racanello, Anita Restrepo, Tian Saltzman, Batya Septimus, Russell Tobe, Rachel Waltz, Anna Williams, Anna Yeo, Francisco X. Castellanos, Arno Klein, Tomas Paus, Bennett L. Leventhal, R. Cameron Craddock, Harold S. Koplewicz, Michael P. Milham

Research output: Contribution to journalArticle

23 Citations (Scopus)

Abstract

Technological and methodological innovations are equipping researchers with unprecedented capabilities for detecting and characterizing pathologic processes in the developing human brain. As a result, ambitions to achieve clinically useful tools to assist in the diagnosis and management of mental health and learning disorders are gaining momentum. To this end, it is critical to accrue large-scale multimodal datasets that capture a broad range of commonly encountered clinical psychopathology. The Child Mind Institute has launched the Healthy Brain Network (HBN), an ongoing initiative focused on creating and sharing a biobank of data from 10,000 New York area participants (ages 5-21). The HBN Biobank houses data about psychiatric, behavioral, cognitive, and lifestyle phenotypes, as well as multimodal brain imaging (resting and naturalistic viewing fMRI, diffusion MRI, morphometric MRI), electroencephalography, eye-tracking, voice and video recordings, genetics and actigraphy. Here, we present the rationale, design and implementation of HBN protocols. We describe the first data release (n=664) and the potential of the biobank to advance related areas (e.g., biophysical modeling, voice analysis).

Original languageEnglish (US)
Article number170181
JournalScientific data
Volume4
DOIs
StatePublished - Dec 19 2017
Externally publishedYes

Fingerprint

Pediatrics
learning disorder
Descriptors
Disorder
Brain
brain
Health
mental health
Resources
resources
Magnetic resonance imaging
Electroencephalography
Video recording
Eye Tracking
Functional Magnetic Resonance Imaging
video recording
Network Protocols
psychopathology
Phenotype
Momentum

ASJC Scopus subject areas

  • Statistics and Probability
  • Information Systems
  • Education
  • Computer Science Applications
  • Statistics, Probability and Uncertainty
  • Library and Information Sciences

Cite this

Alexander, L. M., Escalera, J., Ai, L., Andreotti, C., Febre, K., Mangone, A., ... Milham, M. P. (2017). Data Descriptor: An open resource for transdiagnostic research in pediatric mental health and learning disorders. Scientific data, 4, [170181]. https://doi.org/10.1038/sdata.2017.181

Data Descriptor : An open resource for transdiagnostic research in pediatric mental health and learning disorders. / Alexander, Lindsay M.; Escalera, Jasmine; Ai, Lei; Andreotti, Charissa; Febre, Karina; Mangone, Alexander; Vega-Potler, Natan; Langer, Nicolas; Alexander, Alexis; Kovacs, Meagan; Litke, Shannon; O'Hagan, Bridget; Andersen, Jennifer; Bronstein, Batya; Bui, Anastasia; Bushey, Marijayne; Butler, Henry; Castagna, Victoria; Camacho, Nicolas; Chan, Elisha; Citera, Danielle; Clucas, Jon; Cohen, Samantha; Dufek, Sarah; Eaves, Megan; Fradera, Brian; Gardner, Judith; Grant-Villegas, Natalie; Green, Gabriella; Gregory, Camille; Hart, Emily; Harris, Shana; Horton, Megan; Kahn, Danielle; Kabotyanski, Katherine; Karmel, Bernard; Kelly, Simon P.; Kleinman, Kayla; Koo, Bonhwang; Kramer, Eliza; Lennon, Elizabeth; Lord, Catherine; Mantello, Ginny; Margolis, Amy; Merikangas, Kathleen R.; Milham, Judith; Minniti, Giuseppe; Neuhaus, Rebecca; Levine, Alexandra; Osman, Yael; Parra, Lucas C.; Pugh, Ken R.; Racanello, Amy; Restrepo, Anita; Saltzman, Tian; Septimus, Batya; Tobe, Russell; Waltz, Rachel; Williams, Anna; Yeo, Anna; Castellanos, Francisco X.; Klein, Arno; Paus, Tomas; Leventhal, Bennett L.; Craddock, R. Cameron; Koplewicz, Harold S.; Milham, Michael P.

In: Scientific data, Vol. 4, 170181, 19.12.2017.

Research output: Contribution to journalArticle

Alexander, LM, Escalera, J, Ai, L, Andreotti, C, Febre, K, Mangone, A, Vega-Potler, N, Langer, N, Alexander, A, Kovacs, M, Litke, S, O'Hagan, B, Andersen, J, Bronstein, B, Bui, A, Bushey, M, Butler, H, Castagna, V, Camacho, N, Chan, E, Citera, D, Clucas, J, Cohen, S, Dufek, S, Eaves, M, Fradera, B, Gardner, J, Grant-Villegas, N, Green, G, Gregory, C, Hart, E, Harris, S, Horton, M, Kahn, D, Kabotyanski, K, Karmel, B, Kelly, SP, Kleinman, K, Koo, B, Kramer, E, Lennon, E, Lord, C, Mantello, G, Margolis, A, Merikangas, KR, Milham, J, Minniti, G, Neuhaus, R, Levine, A, Osman, Y, Parra, LC, Pugh, KR, Racanello, A, Restrepo, A, Saltzman, T, Septimus, B, Tobe, R, Waltz, R, Williams, A, Yeo, A, Castellanos, FX, Klein, A, Paus, T, Leventhal, BL, Craddock, RC, Koplewicz, HS & Milham, MP 2017, 'Data Descriptor: An open resource for transdiagnostic research in pediatric mental health and learning disorders', Scientific data, vol. 4, 170181. https://doi.org/10.1038/sdata.2017.181
Alexander, Lindsay M. ; Escalera, Jasmine ; Ai, Lei ; Andreotti, Charissa ; Febre, Karina ; Mangone, Alexander ; Vega-Potler, Natan ; Langer, Nicolas ; Alexander, Alexis ; Kovacs, Meagan ; Litke, Shannon ; O'Hagan, Bridget ; Andersen, Jennifer ; Bronstein, Batya ; Bui, Anastasia ; Bushey, Marijayne ; Butler, Henry ; Castagna, Victoria ; Camacho, Nicolas ; Chan, Elisha ; Citera, Danielle ; Clucas, Jon ; Cohen, Samantha ; Dufek, Sarah ; Eaves, Megan ; Fradera, Brian ; Gardner, Judith ; Grant-Villegas, Natalie ; Green, Gabriella ; Gregory, Camille ; Hart, Emily ; Harris, Shana ; Horton, Megan ; Kahn, Danielle ; Kabotyanski, Katherine ; Karmel, Bernard ; Kelly, Simon P. ; Kleinman, Kayla ; Koo, Bonhwang ; Kramer, Eliza ; Lennon, Elizabeth ; Lord, Catherine ; Mantello, Ginny ; Margolis, Amy ; Merikangas, Kathleen R. ; Milham, Judith ; Minniti, Giuseppe ; Neuhaus, Rebecca ; Levine, Alexandra ; Osman, Yael ; Parra, Lucas C. ; Pugh, Ken R. ; Racanello, Amy ; Restrepo, Anita ; Saltzman, Tian ; Septimus, Batya ; Tobe, Russell ; Waltz, Rachel ; Williams, Anna ; Yeo, Anna ; Castellanos, Francisco X. ; Klein, Arno ; Paus, Tomas ; Leventhal, Bennett L. ; Craddock, R. Cameron ; Koplewicz, Harold S. ; Milham, Michael P. / Data Descriptor : An open resource for transdiagnostic research in pediatric mental health and learning disorders. In: Scientific data. 2017 ; Vol. 4.
@article{f9004958b7c341a885b19195f64c6811,
title = "Data Descriptor: An open resource for transdiagnostic research in pediatric mental health and learning disorders",
abstract = "Technological and methodological innovations are equipping researchers with unprecedented capabilities for detecting and characterizing pathologic processes in the developing human brain. As a result, ambitions to achieve clinically useful tools to assist in the diagnosis and management of mental health and learning disorders are gaining momentum. To this end, it is critical to accrue large-scale multimodal datasets that capture a broad range of commonly encountered clinical psychopathology. The Child Mind Institute has launched the Healthy Brain Network (HBN), an ongoing initiative focused on creating and sharing a biobank of data from 10,000 New York area participants (ages 5-21). The HBN Biobank houses data about psychiatric, behavioral, cognitive, and lifestyle phenotypes, as well as multimodal brain imaging (resting and naturalistic viewing fMRI, diffusion MRI, morphometric MRI), electroencephalography, eye-tracking, voice and video recordings, genetics and actigraphy. Here, we present the rationale, design and implementation of HBN protocols. We describe the first data release (n=664) and the potential of the biobank to advance related areas (e.g., biophysical modeling, voice analysis).",
author = "Alexander, {Lindsay M.} and Jasmine Escalera and Lei Ai and Charissa Andreotti and Karina Febre and Alexander Mangone and Natan Vega-Potler and Nicolas Langer and Alexis Alexander and Meagan Kovacs and Shannon Litke and Bridget O'Hagan and Jennifer Andersen and Batya Bronstein and Anastasia Bui and Marijayne Bushey and Henry Butler and Victoria Castagna and Nicolas Camacho and Elisha Chan and Danielle Citera and Jon Clucas and Samantha Cohen and Sarah Dufek and Megan Eaves and Brian Fradera and Judith Gardner and Natalie Grant-Villegas and Gabriella Green and Camille Gregory and Emily Hart and Shana Harris and Megan Horton and Danielle Kahn and Katherine Kabotyanski and Bernard Karmel and Kelly, {Simon P.} and Kayla Kleinman and Bonhwang Koo and Eliza Kramer and Elizabeth Lennon and Catherine Lord and Ginny Mantello and Amy Margolis and Merikangas, {Kathleen R.} and Judith Milham and Giuseppe Minniti and Rebecca Neuhaus and Alexandra Levine and Yael Osman and Parra, {Lucas C.} and Pugh, {Ken R.} and Amy Racanello and Anita Restrepo and Tian Saltzman and Batya Septimus and Russell Tobe and Rachel Waltz and Anna Williams and Anna Yeo and Castellanos, {Francisco X.} and Arno Klein and Tomas Paus and Leventhal, {Bennett L.} and Craddock, {R. Cameron} and Koplewicz, {Harold S.} and Milham, {Michael P.}",
year = "2017",
month = "12",
day = "19",
doi = "10.1038/sdata.2017.181",
language = "English (US)",
volume = "4",
journal = "Scientific data",
issn = "2052-4463",
publisher = "Nature Publishing Group",

}

TY - JOUR

T1 - Data Descriptor

T2 - An open resource for transdiagnostic research in pediatric mental health and learning disorders

AU - Alexander, Lindsay M.

AU - Escalera, Jasmine

AU - Ai, Lei

AU - Andreotti, Charissa

AU - Febre, Karina

AU - Mangone, Alexander

AU - Vega-Potler, Natan

AU - Langer, Nicolas

AU - Alexander, Alexis

AU - Kovacs, Meagan

AU - Litke, Shannon

AU - O'Hagan, Bridget

AU - Andersen, Jennifer

AU - Bronstein, Batya

AU - Bui, Anastasia

AU - Bushey, Marijayne

AU - Butler, Henry

AU - Castagna, Victoria

AU - Camacho, Nicolas

AU - Chan, Elisha

AU - Citera, Danielle

AU - Clucas, Jon

AU - Cohen, Samantha

AU - Dufek, Sarah

AU - Eaves, Megan

AU - Fradera, Brian

AU - Gardner, Judith

AU - Grant-Villegas, Natalie

AU - Green, Gabriella

AU - Gregory, Camille

AU - Hart, Emily

AU - Harris, Shana

AU - Horton, Megan

AU - Kahn, Danielle

AU - Kabotyanski, Katherine

AU - Karmel, Bernard

AU - Kelly, Simon P.

AU - Kleinman, Kayla

AU - Koo, Bonhwang

AU - Kramer, Eliza

AU - Lennon, Elizabeth

AU - Lord, Catherine

AU - Mantello, Ginny

AU - Margolis, Amy

AU - Merikangas, Kathleen R.

AU - Milham, Judith

AU - Minniti, Giuseppe

AU - Neuhaus, Rebecca

AU - Levine, Alexandra

AU - Osman, Yael

AU - Parra, Lucas C.

AU - Pugh, Ken R.

AU - Racanello, Amy

AU - Restrepo, Anita

AU - Saltzman, Tian

AU - Septimus, Batya

AU - Tobe, Russell

AU - Waltz, Rachel

AU - Williams, Anna

AU - Yeo, Anna

AU - Castellanos, Francisco X.

AU - Klein, Arno

AU - Paus, Tomas

AU - Leventhal, Bennett L.

AU - Craddock, R. Cameron

AU - Koplewicz, Harold S.

AU - Milham, Michael P.

PY - 2017/12/19

Y1 - 2017/12/19

N2 - Technological and methodological innovations are equipping researchers with unprecedented capabilities for detecting and characterizing pathologic processes in the developing human brain. As a result, ambitions to achieve clinically useful tools to assist in the diagnosis and management of mental health and learning disorders are gaining momentum. To this end, it is critical to accrue large-scale multimodal datasets that capture a broad range of commonly encountered clinical psychopathology. The Child Mind Institute has launched the Healthy Brain Network (HBN), an ongoing initiative focused on creating and sharing a biobank of data from 10,000 New York area participants (ages 5-21). The HBN Biobank houses data about psychiatric, behavioral, cognitive, and lifestyle phenotypes, as well as multimodal brain imaging (resting and naturalistic viewing fMRI, diffusion MRI, morphometric MRI), electroencephalography, eye-tracking, voice and video recordings, genetics and actigraphy. Here, we present the rationale, design and implementation of HBN protocols. We describe the first data release (n=664) and the potential of the biobank to advance related areas (e.g., biophysical modeling, voice analysis).

AB - Technological and methodological innovations are equipping researchers with unprecedented capabilities for detecting and characterizing pathologic processes in the developing human brain. As a result, ambitions to achieve clinically useful tools to assist in the diagnosis and management of mental health and learning disorders are gaining momentum. To this end, it is critical to accrue large-scale multimodal datasets that capture a broad range of commonly encountered clinical psychopathology. The Child Mind Institute has launched the Healthy Brain Network (HBN), an ongoing initiative focused on creating and sharing a biobank of data from 10,000 New York area participants (ages 5-21). The HBN Biobank houses data about psychiatric, behavioral, cognitive, and lifestyle phenotypes, as well as multimodal brain imaging (resting and naturalistic viewing fMRI, diffusion MRI, morphometric MRI), electroencephalography, eye-tracking, voice and video recordings, genetics and actigraphy. Here, we present the rationale, design and implementation of HBN protocols. We describe the first data release (n=664) and the potential of the biobank to advance related areas (e.g., biophysical modeling, voice analysis).

UR - http://www.scopus.com/inward/record.url?scp=85038853251&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=85038853251&partnerID=8YFLogxK

U2 - 10.1038/sdata.2017.181

DO - 10.1038/sdata.2017.181

M3 - Article

VL - 4

JO - Scientific data

JF - Scientific data

SN - 2052-4463

M1 - 170181

ER -