TY - JOUR
T1 - Cytochrome P450-dependent lipid metabolism in preovulatory follicles
AU - Newman, J. W.
AU - Stok, J. E.
AU - Vidal, J. D.
AU - Corbin, C. J.
AU - Huang, Q.
AU - Hammock, B. D.
AU - Conley, Alan J
PY - 2004/11
Y1 - 2004/11
N2 - Estrogen biosynthesis and proteolysis are both important processes involved in ovarian follicular development, which may be influenced by cytochrome P450 (CYP)-dependent fatty acid metabolites. However, CYP-dependent lipid metabolism has not been characterized with respect to follicular maturation in vivo. Therefore, follicular fluid was collected in the hours before and after the LH surge in pigs, and concentrations of epoxy, hydroxy, and dihydroxy lipids were measured by liquid chromatography tandem mass spectrometry. Arachidonate oxidation and epoxyeicosatrienoic acid hydrolysis to dihydroxyeicosatrienoic acids (DHETs) were also assessed in thecal and granulosa tissue fractions, and the expression of CYP epoxygenases was evaluated by immunoblots using available antisera. To evaluate soluble epoxide hydrolase (sEH) expression, the porcine sEH was cloned from ovarian tissue, expressed and purified for antibody generation. The follicular fluid oxylipin concentrations ranged from 1-150 nM depending on the compound and estrous stage. The follicular fluid concentrations of CYP-dependent oxylipins increased at estrus, as did sEH expression; however, significant changes in epoxides were not observed, and the 11,12-DHET peak was delayed. The ratio of 14,15-DHET:11,12-DHET across all samples correlated with the log of follicular fluid estradiol concentrations (P < 0.01). Epoxygenase activities were similar in theca and granulosa, varying little with follicular development, whereas the decline of a single CYP2J isoform at ovulation was observed by immunoblots. The sEH activity was higher in granulosa than in theca. Finally, the dynamic changes in follicular CYP-dependent arachidonic acid metabolites and their modulatory function in vascular models suggest roles for these metabolites in follicular maturation, which may include regulation of estradiol biosynthesis and preovulatory remodeling of the follicular wall that should be fully explored in future studies.
AB - Estrogen biosynthesis and proteolysis are both important processes involved in ovarian follicular development, which may be influenced by cytochrome P450 (CYP)-dependent fatty acid metabolites. However, CYP-dependent lipid metabolism has not been characterized with respect to follicular maturation in vivo. Therefore, follicular fluid was collected in the hours before and after the LH surge in pigs, and concentrations of epoxy, hydroxy, and dihydroxy lipids were measured by liquid chromatography tandem mass spectrometry. Arachidonate oxidation and epoxyeicosatrienoic acid hydrolysis to dihydroxyeicosatrienoic acids (DHETs) were also assessed in thecal and granulosa tissue fractions, and the expression of CYP epoxygenases was evaluated by immunoblots using available antisera. To evaluate soluble epoxide hydrolase (sEH) expression, the porcine sEH was cloned from ovarian tissue, expressed and purified for antibody generation. The follicular fluid oxylipin concentrations ranged from 1-150 nM depending on the compound and estrous stage. The follicular fluid concentrations of CYP-dependent oxylipins increased at estrus, as did sEH expression; however, significant changes in epoxides were not observed, and the 11,12-DHET peak was delayed. The ratio of 14,15-DHET:11,12-DHET across all samples correlated with the log of follicular fluid estradiol concentrations (P < 0.01). Epoxygenase activities were similar in theca and granulosa, varying little with follicular development, whereas the decline of a single CYP2J isoform at ovulation was observed by immunoblots. The sEH activity was higher in granulosa than in theca. Finally, the dynamic changes in follicular CYP-dependent arachidonic acid metabolites and their modulatory function in vascular models suggest roles for these metabolites in follicular maturation, which may include regulation of estradiol biosynthesis and preovulatory remodeling of the follicular wall that should be fully explored in future studies.
UR - http://www.scopus.com/inward/record.url?scp=9244257286&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=9244257286&partnerID=8YFLogxK
U2 - 10.1210/en.2004-0710
DO - 10.1210/en.2004-0710
M3 - Article
C2 - 15308618
AN - SCOPUS:9244257286
VL - 145
SP - 5097
EP - 5105
JO - Endocrinology
JF - Endocrinology
SN - 0013-7227
IS - 11
ER -