Cryogenic thermonuclear fuel implosions on the National Ignition Facility

S. H. Glenzer, D. A. Callahan, A. J. MacKinnon, J. L. Kline, G. Grim, E. T. Alger, R. L. Berger, L. A. Bernstein, R. Betti, D. L. Bleuel, T. R. Boehly, D. K. Bradley, S. C. Burkhart, R. Burr, J. A. Caggiano, C. Castro, D. T. Casey, C. Choate, D. S. Clark, P. CelliersC. J. Cerjan, G. W. Collins, E. L. Dewald, P. Dinicola, J. M. Dinicola, L. Divol, S. Dixit, T. Döppner, R. Dylla-Spears, E. Dzenitis, M. Eckart, G. Erbert, D. Farley, J. Fair, D. Fittinghoff, Matthias Frank, L. J.A. Frenje, S. Friedrich, D. T. Casey, M. Gatu Johnson, C. Gibson, E. Giraldez, V. Glebov, S. Glenn, N. Guler, S. W. Haan, B. J. Haid, B. A. Hammel, A. V. Hamza, C. A. Haynam, G. M. Heestand, M. Hermann, H. W. Hermann, D. G. Hicks, D. E. Hinkel, J. P. Holder, D. M. Holunda, J. B. Horner, W. W. Hsing, H. Huang, N. Izumi, M. Jackson, O. S. Jones, D. H. Kalantar, R. Kauffman, J. D. Kilkenny, R. K. Kirkwood, J. Klingmann, T. Kohut, J. P. Knauer, J. A. Koch, B. Kozioziemki, G. A. Kyrala, A. L. Kritcher, J. Kroll, K. La Fortune, L. Lagin, O. L. Landen, D. W. Larson, D. Latray, R. J. Leeper, S. Le Pape, J. D. Lindl, R. Lowe-Webb, T. Ma, J. McNaney, A. G. MacPhee, T. N. Malsbury, E. Mapoles, C. D. Marshall, N. B. Meezan, F. Merrill, P. Michel, J. D. Moody, A. S. Moore, M. Moran, K. A. Moreno, D. H. Munro, B. R. Nathan, A. Nikroo, R. E. Olson, C. D. Orth, A. E. Pak, P. K. Patel, T. Parham, R. Petrasso, J. E. Ralph, H. Rinderknecht, S. P. Regan, H. F. Robey, J. S. Ross, M. D. Rosen, R. Sacks, J. D. Salmonson, R. Saunders, J. Sater, C. Sangster, M. B. Schneider, F. H. Séguin, M. J. Shaw, B. K. Spears, P. T. Springer, W. Stoeffl, L. J. Suter, C. A. Thomas, R. Tommasini, R. P.J. Town, C. Walters, S. Weaver, S. V. Weber, P. J. Wegner, P. K. Whitman, K. Widmann, C. C. Widmayer, C. H. Wilde, D. C. Wilson, B. Van Wonterghem, B. J. MacGowan, L. J. Atherton, M. J. Edwards, E. I. Moses

Research output: Contribution to journalArticle

85 Citations (Scopus)

Abstract

The first inertial confinement fusion implosion experiments with equimolar deuterium-tritium thermonuclear fuel have been performed on the National Ignition Facility. These experiments use 0.17 mg of fuel with the potential for ignition and significant fusion yield conditions. The thermonuclear fuel has been fielded as a cryogenic layer on the inside of a spherical plastic capsule that is mounted in the center of a cylindrical gold hohlraum. Heating the hohlraum with 192 laser beams for a total laser energy of 1.6 MJ produces a soft x-ray field with 300 eV temperature. The ablation pressure produced by the radiation field compresses the initially 2.2-mm diameter capsule by a factor of 30 to a spherical dense fuel shell that surrounds a central hot-spot plasma of 50 μm diameter. While an extensive set of x-ray and neutron diagnostics has been applied to characterize hot spot formation from the x-ray emission and 14.1 MeV deuterium-tritium primary fusion neutrons, thermonuclear fuel assembly is studied by measuring the down-scattered neutrons with energies in the range of 10 to 12 MeV. X-ray and neutron imaging of the compressed core and fuel indicate a fuel thickness of (14 ± 3) μm, which combined with magnetic recoil spectrometer measurements of the fuel areal density of (1 ± 0.09) g cm-2 result in fuel densities approaching 600 g cm-3. The fuel surrounds a hot-spot plasma with average ion temperatures of (3.5 ± 0.1) keV that is measured with neutron time of flight spectra. The hot-spot plasma produces a total fusion neutron yield of 1015 that is measured with the magnetic recoil spectrometer and nuclear activation diagnostics that indicate a 14.1 MeV yield of (7. 5 ± 0. 1) × 1014 which is 70% to 75% of the total fusion yield due to the high areal density. Gamma ray measurements provide the duration of nuclear activity of (170 ± 30) ps. These indirect-drive implosions result in the highest areal densities and neutron yields achieved on laser facilities to date. This achievement is the result of the first hohlraum and capsule tuning experiments where the stagnation pressures have been systematically increased by more than a factor of 10 by fielding low-entropy implosions through the control of radiation symmetry, small hot electron production, and proper shock timing. The stagnation pressure is above 100 Gbars resulting in high Lawson-type confinement parameters of P τ ≃ 10 atm s. Comparisons with radiation-hydrodynamic simulations indicate that the pressure is within a factor of three required for reaching ignition and high yield. This will be the focus of future higher-velocity implosions that will employ additional optimizations of hohlraum, capsule and laser pulse shape conditions.

Original languageEnglish (US)
Article number056318
JournalPhysics of Plasmas
Volume19
Issue number5
DOIs
StatePublished - May 1 2012
Externally publishedYes

Fingerprint

implosions
ignition
cryogenics
neutrons
capsules
fusion
stagnation pressure
tritium
deuterium
x rays
spectrometers
lasers
inertial confinement fusion
radiation
ion temperature
hot electrons
radiation distribution
ablation
plastics
assembly

ASJC Scopus subject areas

  • Condensed Matter Physics

Cite this

Glenzer, S. H., Callahan, D. A., MacKinnon, A. J., Kline, J. L., Grim, G., Alger, E. T., ... Moses, E. I. (2012). Cryogenic thermonuclear fuel implosions on the National Ignition Facility. Physics of Plasmas, 19(5), [056318]. https://doi.org/10.1063/1.4719686

Cryogenic thermonuclear fuel implosions on the National Ignition Facility. / Glenzer, S. H.; Callahan, D. A.; MacKinnon, A. J.; Kline, J. L.; Grim, G.; Alger, E. T.; Berger, R. L.; Bernstein, L. A.; Betti, R.; Bleuel, D. L.; Boehly, T. R.; Bradley, D. K.; Burkhart, S. C.; Burr, R.; Caggiano, J. A.; Castro, C.; Casey, D. T.; Choate, C.; Clark, D. S.; Celliers, P.; Cerjan, C. J.; Collins, G. W.; Dewald, E. L.; Dinicola, P.; Dinicola, J. M.; Divol, L.; Dixit, S.; Döppner, T.; Dylla-Spears, R.; Dzenitis, E.; Eckart, M.; Erbert, G.; Farley, D.; Fair, J.; Fittinghoff, D.; Frank, Matthias; Frenje, L. J.A.; Friedrich, S.; Casey, D. T.; Gatu Johnson, M.; Gibson, C.; Giraldez, E.; Glebov, V.; Glenn, S.; Guler, N.; Haan, S. W.; Haid, B. J.; Hammel, B. A.; Hamza, A. V.; Haynam, C. A.; Heestand, G. M.; Hermann, M.; Hermann, H. W.; Hicks, D. G.; Hinkel, D. E.; Holder, J. P.; Holunda, D. M.; Horner, J. B.; Hsing, W. W.; Huang, H.; Izumi, N.; Jackson, M.; Jones, O. S.; Kalantar, D. H.; Kauffman, R.; Kilkenny, J. D.; Kirkwood, R. K.; Klingmann, J.; Kohut, T.; Knauer, J. P.; Koch, J. A.; Kozioziemki, B.; Kyrala, G. A.; Kritcher, A. L.; Kroll, J.; La Fortune, K.; Lagin, L.; Landen, O. L.; Larson, D. W.; Latray, D.; Leeper, R. J.; Le Pape, S.; Lindl, J. D.; Lowe-Webb, R.; Ma, T.; McNaney, J.; MacPhee, A. G.; Malsbury, T. N.; Mapoles, E.; Marshall, C. D.; Meezan, N. B.; Merrill, F.; Michel, P.; Moody, J. D.; Moore, A. S.; Moran, M.; Moreno, K. A.; Munro, D. H.; Nathan, B. R.; Nikroo, A.; Olson, R. E.; Orth, C. D.; Pak, A. E.; Patel, P. K.; Parham, T.; Petrasso, R.; Ralph, J. E.; Rinderknecht, H.; Regan, S. P.; Robey, H. F.; Ross, J. S.; Rosen, M. D.; Sacks, R.; Salmonson, J. D.; Saunders, R.; Sater, J.; Sangster, C.; Schneider, M. B.; Séguin, F. H.; Shaw, M. J.; Spears, B. K.; Springer, P. T.; Stoeffl, W.; Suter, L. J.; Thomas, C. A.; Tommasini, R.; Town, R. P.J.; Walters, C.; Weaver, S.; Weber, S. V.; Wegner, P. J.; Whitman, P. K.; Widmann, K.; Widmayer, C. C.; Wilde, C. H.; Wilson, D. C.; Van Wonterghem, B.; MacGowan, B. J.; Atherton, L. J.; Edwards, M. J.; Moses, E. I.

In: Physics of Plasmas, Vol. 19, No. 5, 056318, 01.05.2012.

Research output: Contribution to journalArticle

Glenzer, SH, Callahan, DA, MacKinnon, AJ, Kline, JL, Grim, G, Alger, ET, Berger, RL, Bernstein, LA, Betti, R, Bleuel, DL, Boehly, TR, Bradley, DK, Burkhart, SC, Burr, R, Caggiano, JA, Castro, C, Casey, DT, Choate, C, Clark, DS, Celliers, P, Cerjan, CJ, Collins, GW, Dewald, EL, Dinicola, P, Dinicola, JM, Divol, L, Dixit, S, Döppner, T, Dylla-Spears, R, Dzenitis, E, Eckart, M, Erbert, G, Farley, D, Fair, J, Fittinghoff, D, Frank, M, Frenje, LJA, Friedrich, S, Casey, DT, Gatu Johnson, M, Gibson, C, Giraldez, E, Glebov, V, Glenn, S, Guler, N, Haan, SW, Haid, BJ, Hammel, BA, Hamza, AV, Haynam, CA, Heestand, GM, Hermann, M, Hermann, HW, Hicks, DG, Hinkel, DE, Holder, JP, Holunda, DM, Horner, JB, Hsing, WW, Huang, H, Izumi, N, Jackson, M, Jones, OS, Kalantar, DH, Kauffman, R, Kilkenny, JD, Kirkwood, RK, Klingmann, J, Kohut, T, Knauer, JP, Koch, JA, Kozioziemki, B, Kyrala, GA, Kritcher, AL, Kroll, J, La Fortune, K, Lagin, L, Landen, OL, Larson, DW, Latray, D, Leeper, RJ, Le Pape, S, Lindl, JD, Lowe-Webb, R, Ma, T, McNaney, J, MacPhee, AG, Malsbury, TN, Mapoles, E, Marshall, CD, Meezan, NB, Merrill, F, Michel, P, Moody, JD, Moore, AS, Moran, M, Moreno, KA, Munro, DH, Nathan, BR, Nikroo, A, Olson, RE, Orth, CD, Pak, AE, Patel, PK, Parham, T, Petrasso, R, Ralph, JE, Rinderknecht, H, Regan, SP, Robey, HF, Ross, JS, Rosen, MD, Sacks, R, Salmonson, JD, Saunders, R, Sater, J, Sangster, C, Schneider, MB, Séguin, FH, Shaw, MJ, Spears, BK, Springer, PT, Stoeffl, W, Suter, LJ, Thomas, CA, Tommasini, R, Town, RPJ, Walters, C, Weaver, S, Weber, SV, Wegner, PJ, Whitman, PK, Widmann, K, Widmayer, CC, Wilde, CH, Wilson, DC, Van Wonterghem, B, MacGowan, BJ, Atherton, LJ, Edwards, MJ & Moses, EI 2012, 'Cryogenic thermonuclear fuel implosions on the National Ignition Facility', Physics of Plasmas, vol. 19, no. 5, 056318. https://doi.org/10.1063/1.4719686
Glenzer SH, Callahan DA, MacKinnon AJ, Kline JL, Grim G, Alger ET et al. Cryogenic thermonuclear fuel implosions on the National Ignition Facility. Physics of Plasmas. 2012 May 1;19(5). 056318. https://doi.org/10.1063/1.4719686
Glenzer, S. H. ; Callahan, D. A. ; MacKinnon, A. J. ; Kline, J. L. ; Grim, G. ; Alger, E. T. ; Berger, R. L. ; Bernstein, L. A. ; Betti, R. ; Bleuel, D. L. ; Boehly, T. R. ; Bradley, D. K. ; Burkhart, S. C. ; Burr, R. ; Caggiano, J. A. ; Castro, C. ; Casey, D. T. ; Choate, C. ; Clark, D. S. ; Celliers, P. ; Cerjan, C. J. ; Collins, G. W. ; Dewald, E. L. ; Dinicola, P. ; Dinicola, J. M. ; Divol, L. ; Dixit, S. ; Döppner, T. ; Dylla-Spears, R. ; Dzenitis, E. ; Eckart, M. ; Erbert, G. ; Farley, D. ; Fair, J. ; Fittinghoff, D. ; Frank, Matthias ; Frenje, L. J.A. ; Friedrich, S. ; Casey, D. T. ; Gatu Johnson, M. ; Gibson, C. ; Giraldez, E. ; Glebov, V. ; Glenn, S. ; Guler, N. ; Haan, S. W. ; Haid, B. J. ; Hammel, B. A. ; Hamza, A. V. ; Haynam, C. A. ; Heestand, G. M. ; Hermann, M. ; Hermann, H. W. ; Hicks, D. G. ; Hinkel, D. E. ; Holder, J. P. ; Holunda, D. M. ; Horner, J. B. ; Hsing, W. W. ; Huang, H. ; Izumi, N. ; Jackson, M. ; Jones, O. S. ; Kalantar, D. H. ; Kauffman, R. ; Kilkenny, J. D. ; Kirkwood, R. K. ; Klingmann, J. ; Kohut, T. ; Knauer, J. P. ; Koch, J. A. ; Kozioziemki, B. ; Kyrala, G. A. ; Kritcher, A. L. ; Kroll, J. ; La Fortune, K. ; Lagin, L. ; Landen, O. L. ; Larson, D. W. ; Latray, D. ; Leeper, R. J. ; Le Pape, S. ; Lindl, J. D. ; Lowe-Webb, R. ; Ma, T. ; McNaney, J. ; MacPhee, A. G. ; Malsbury, T. N. ; Mapoles, E. ; Marshall, C. D. ; Meezan, N. B. ; Merrill, F. ; Michel, P. ; Moody, J. D. ; Moore, A. S. ; Moran, M. ; Moreno, K. A. ; Munro, D. H. ; Nathan, B. R. ; Nikroo, A. ; Olson, R. E. ; Orth, C. D. ; Pak, A. E. ; Patel, P. K. ; Parham, T. ; Petrasso, R. ; Ralph, J. E. ; Rinderknecht, H. ; Regan, S. P. ; Robey, H. F. ; Ross, J. S. ; Rosen, M. D. ; Sacks, R. ; Salmonson, J. D. ; Saunders, R. ; Sater, J. ; Sangster, C. ; Schneider, M. B. ; Séguin, F. H. ; Shaw, M. J. ; Spears, B. K. ; Springer, P. T. ; Stoeffl, W. ; Suter, L. J. ; Thomas, C. A. ; Tommasini, R. ; Town, R. P.J. ; Walters, C. ; Weaver, S. ; Weber, S. V. ; Wegner, P. J. ; Whitman, P. K. ; Widmann, K. ; Widmayer, C. C. ; Wilde, C. H. ; Wilson, D. C. ; Van Wonterghem, B. ; MacGowan, B. J. ; Atherton, L. J. ; Edwards, M. J. ; Moses, E. I. / Cryogenic thermonuclear fuel implosions on the National Ignition Facility. In: Physics of Plasmas. 2012 ; Vol. 19, No. 5.
@article{664d6991bb3e4ebd85441540ef1f7e6d,
title = "Cryogenic thermonuclear fuel implosions on the National Ignition Facility",
abstract = "The first inertial confinement fusion implosion experiments with equimolar deuterium-tritium thermonuclear fuel have been performed on the National Ignition Facility. These experiments use 0.17 mg of fuel with the potential for ignition and significant fusion yield conditions. The thermonuclear fuel has been fielded as a cryogenic layer on the inside of a spherical plastic capsule that is mounted in the center of a cylindrical gold hohlraum. Heating the hohlraum with 192 laser beams for a total laser energy of 1.6 MJ produces a soft x-ray field with 300 eV temperature. The ablation pressure produced by the radiation field compresses the initially 2.2-mm diameter capsule by a factor of 30 to a spherical dense fuel shell that surrounds a central hot-spot plasma of 50 μm diameter. While an extensive set of x-ray and neutron diagnostics has been applied to characterize hot spot formation from the x-ray emission and 14.1 MeV deuterium-tritium primary fusion neutrons, thermonuclear fuel assembly is studied by measuring the down-scattered neutrons with energies in the range of 10 to 12 MeV. X-ray and neutron imaging of the compressed core and fuel indicate a fuel thickness of (14 ± 3) μm, which combined with magnetic recoil spectrometer measurements of the fuel areal density of (1 ± 0.09) g cm-2 result in fuel densities approaching 600 g cm-3. The fuel surrounds a hot-spot plasma with average ion temperatures of (3.5 ± 0.1) keV that is measured with neutron time of flight spectra. The hot-spot plasma produces a total fusion neutron yield of 1015 that is measured with the magnetic recoil spectrometer and nuclear activation diagnostics that indicate a 14.1 MeV yield of (7. 5 ± 0. 1) × 1014 which is 70{\%} to 75{\%} of the total fusion yield due to the high areal density. Gamma ray measurements provide the duration of nuclear activity of (170 ± 30) ps. These indirect-drive implosions result in the highest areal densities and neutron yields achieved on laser facilities to date. This achievement is the result of the first hohlraum and capsule tuning experiments where the stagnation pressures have been systematically increased by more than a factor of 10 by fielding low-entropy implosions through the control of radiation symmetry, small hot electron production, and proper shock timing. The stagnation pressure is above 100 Gbars resulting in high Lawson-type confinement parameters of P τ ≃ 10 atm s. Comparisons with radiation-hydrodynamic simulations indicate that the pressure is within a factor of three required for reaching ignition and high yield. This will be the focus of future higher-velocity implosions that will employ additional optimizations of hohlraum, capsule and laser pulse shape conditions.",
author = "Glenzer, {S. H.} and Callahan, {D. A.} and MacKinnon, {A. J.} and Kline, {J. L.} and G. Grim and Alger, {E. T.} and Berger, {R. L.} and Bernstein, {L. A.} and R. Betti and Bleuel, {D. L.} and Boehly, {T. R.} and Bradley, {D. K.} and Burkhart, {S. C.} and R. Burr and Caggiano, {J. A.} and C. Castro and Casey, {D. T.} and C. Choate and Clark, {D. S.} and P. Celliers and Cerjan, {C. J.} and Collins, {G. W.} and Dewald, {E. L.} and P. Dinicola and Dinicola, {J. M.} and L. Divol and S. Dixit and T. D{\"o}ppner and R. Dylla-Spears and E. Dzenitis and M. Eckart and G. Erbert and D. Farley and J. Fair and D. Fittinghoff and Matthias Frank and Frenje, {L. J.A.} and S. Friedrich and Casey, {D. T.} and {Gatu Johnson}, M. and C. Gibson and E. Giraldez and V. Glebov and S. Glenn and N. Guler and Haan, {S. W.} and Haid, {B. J.} and Hammel, {B. A.} and Hamza, {A. V.} and Haynam, {C. A.} and Heestand, {G. M.} and M. Hermann and Hermann, {H. W.} and Hicks, {D. G.} and Hinkel, {D. E.} and Holder, {J. P.} and Holunda, {D. M.} and Horner, {J. B.} and Hsing, {W. W.} and H. Huang and N. Izumi and M. Jackson and Jones, {O. S.} and Kalantar, {D. H.} and R. Kauffman and Kilkenny, {J. D.} and Kirkwood, {R. K.} and J. Klingmann and T. Kohut and Knauer, {J. P.} and Koch, {J. A.} and B. Kozioziemki and Kyrala, {G. A.} and Kritcher, {A. L.} and J. Kroll and {La Fortune}, K. and L. Lagin and Landen, {O. L.} and Larson, {D. W.} and D. Latray and Leeper, {R. J.} and {Le Pape}, S. and Lindl, {J. D.} and R. Lowe-Webb and T. Ma and J. McNaney and MacPhee, {A. G.} and Malsbury, {T. N.} and E. Mapoles and Marshall, {C. D.} and Meezan, {N. B.} and F. Merrill and P. Michel and Moody, {J. D.} and Moore, {A. S.} and M. Moran and Moreno, {K. A.} and Munro, {D. H.} and Nathan, {B. R.} and A. Nikroo and Olson, {R. E.} and Orth, {C. D.} and Pak, {A. E.} and Patel, {P. K.} and T. Parham and R. Petrasso and Ralph, {J. E.} and H. Rinderknecht and Regan, {S. P.} and Robey, {H. F.} and Ross, {J. S.} and Rosen, {M. D.} and R. Sacks and Salmonson, {J. D.} and R. Saunders and J. Sater and C. Sangster and Schneider, {M. B.} and S{\'e}guin, {F. H.} and Shaw, {M. J.} and Spears, {B. K.} and Springer, {P. T.} and W. Stoeffl and Suter, {L. J.} and Thomas, {C. A.} and R. Tommasini and Town, {R. P.J.} and C. Walters and S. Weaver and Weber, {S. V.} and Wegner, {P. J.} and Whitman, {P. K.} and K. Widmann and Widmayer, {C. C.} and Wilde, {C. H.} and Wilson, {D. C.} and {Van Wonterghem}, B. and MacGowan, {B. J.} and Atherton, {L. J.} and Edwards, {M. J.} and Moses, {E. I.}",
year = "2012",
month = "5",
day = "1",
doi = "10.1063/1.4719686",
language = "English (US)",
volume = "19",
journal = "Physics of Plasmas",
issn = "1070-664X",
publisher = "American Institute of Physics Publising LLC",
number = "5",

}

TY - JOUR

T1 - Cryogenic thermonuclear fuel implosions on the National Ignition Facility

AU - Glenzer, S. H.

AU - Callahan, D. A.

AU - MacKinnon, A. J.

AU - Kline, J. L.

AU - Grim, G.

AU - Alger, E. T.

AU - Berger, R. L.

AU - Bernstein, L. A.

AU - Betti, R.

AU - Bleuel, D. L.

AU - Boehly, T. R.

AU - Bradley, D. K.

AU - Burkhart, S. C.

AU - Burr, R.

AU - Caggiano, J. A.

AU - Castro, C.

AU - Casey, D. T.

AU - Choate, C.

AU - Clark, D. S.

AU - Celliers, P.

AU - Cerjan, C. J.

AU - Collins, G. W.

AU - Dewald, E. L.

AU - Dinicola, P.

AU - Dinicola, J. M.

AU - Divol, L.

AU - Dixit, S.

AU - Döppner, T.

AU - Dylla-Spears, R.

AU - Dzenitis, E.

AU - Eckart, M.

AU - Erbert, G.

AU - Farley, D.

AU - Fair, J.

AU - Fittinghoff, D.

AU - Frank, Matthias

AU - Frenje, L. J.A.

AU - Friedrich, S.

AU - Casey, D. T.

AU - Gatu Johnson, M.

AU - Gibson, C.

AU - Giraldez, E.

AU - Glebov, V.

AU - Glenn, S.

AU - Guler, N.

AU - Haan, S. W.

AU - Haid, B. J.

AU - Hammel, B. A.

AU - Hamza, A. V.

AU - Haynam, C. A.

AU - Heestand, G. M.

AU - Hermann, M.

AU - Hermann, H. W.

AU - Hicks, D. G.

AU - Hinkel, D. E.

AU - Holder, J. P.

AU - Holunda, D. M.

AU - Horner, J. B.

AU - Hsing, W. W.

AU - Huang, H.

AU - Izumi, N.

AU - Jackson, M.

AU - Jones, O. S.

AU - Kalantar, D. H.

AU - Kauffman, R.

AU - Kilkenny, J. D.

AU - Kirkwood, R. K.

AU - Klingmann, J.

AU - Kohut, T.

AU - Knauer, J. P.

AU - Koch, J. A.

AU - Kozioziemki, B.

AU - Kyrala, G. A.

AU - Kritcher, A. L.

AU - Kroll, J.

AU - La Fortune, K.

AU - Lagin, L.

AU - Landen, O. L.

AU - Larson, D. W.

AU - Latray, D.

AU - Leeper, R. J.

AU - Le Pape, S.

AU - Lindl, J. D.

AU - Lowe-Webb, R.

AU - Ma, T.

AU - McNaney, J.

AU - MacPhee, A. G.

AU - Malsbury, T. N.

AU - Mapoles, E.

AU - Marshall, C. D.

AU - Meezan, N. B.

AU - Merrill, F.

AU - Michel, P.

AU - Moody, J. D.

AU - Moore, A. S.

AU - Moran, M.

AU - Moreno, K. A.

AU - Munro, D. H.

AU - Nathan, B. R.

AU - Nikroo, A.

AU - Olson, R. E.

AU - Orth, C. D.

AU - Pak, A. E.

AU - Patel, P. K.

AU - Parham, T.

AU - Petrasso, R.

AU - Ralph, J. E.

AU - Rinderknecht, H.

AU - Regan, S. P.

AU - Robey, H. F.

AU - Ross, J. S.

AU - Rosen, M. D.

AU - Sacks, R.

AU - Salmonson, J. D.

AU - Saunders, R.

AU - Sater, J.

AU - Sangster, C.

AU - Schneider, M. B.

AU - Séguin, F. H.

AU - Shaw, M. J.

AU - Spears, B. K.

AU - Springer, P. T.

AU - Stoeffl, W.

AU - Suter, L. J.

AU - Thomas, C. A.

AU - Tommasini, R.

AU - Town, R. P.J.

AU - Walters, C.

AU - Weaver, S.

AU - Weber, S. V.

AU - Wegner, P. J.

AU - Whitman, P. K.

AU - Widmann, K.

AU - Widmayer, C. C.

AU - Wilde, C. H.

AU - Wilson, D. C.

AU - Van Wonterghem, B.

AU - MacGowan, B. J.

AU - Atherton, L. J.

AU - Edwards, M. J.

AU - Moses, E. I.

PY - 2012/5/1

Y1 - 2012/5/1

N2 - The first inertial confinement fusion implosion experiments with equimolar deuterium-tritium thermonuclear fuel have been performed on the National Ignition Facility. These experiments use 0.17 mg of fuel with the potential for ignition and significant fusion yield conditions. The thermonuclear fuel has been fielded as a cryogenic layer on the inside of a spherical plastic capsule that is mounted in the center of a cylindrical gold hohlraum. Heating the hohlraum with 192 laser beams for a total laser energy of 1.6 MJ produces a soft x-ray field with 300 eV temperature. The ablation pressure produced by the radiation field compresses the initially 2.2-mm diameter capsule by a factor of 30 to a spherical dense fuel shell that surrounds a central hot-spot plasma of 50 μm diameter. While an extensive set of x-ray and neutron diagnostics has been applied to characterize hot spot formation from the x-ray emission and 14.1 MeV deuterium-tritium primary fusion neutrons, thermonuclear fuel assembly is studied by measuring the down-scattered neutrons with energies in the range of 10 to 12 MeV. X-ray and neutron imaging of the compressed core and fuel indicate a fuel thickness of (14 ± 3) μm, which combined with magnetic recoil spectrometer measurements of the fuel areal density of (1 ± 0.09) g cm-2 result in fuel densities approaching 600 g cm-3. The fuel surrounds a hot-spot plasma with average ion temperatures of (3.5 ± 0.1) keV that is measured with neutron time of flight spectra. The hot-spot plasma produces a total fusion neutron yield of 1015 that is measured with the magnetic recoil spectrometer and nuclear activation diagnostics that indicate a 14.1 MeV yield of (7. 5 ± 0. 1) × 1014 which is 70% to 75% of the total fusion yield due to the high areal density. Gamma ray measurements provide the duration of nuclear activity of (170 ± 30) ps. These indirect-drive implosions result in the highest areal densities and neutron yields achieved on laser facilities to date. This achievement is the result of the first hohlraum and capsule tuning experiments where the stagnation pressures have been systematically increased by more than a factor of 10 by fielding low-entropy implosions through the control of radiation symmetry, small hot electron production, and proper shock timing. The stagnation pressure is above 100 Gbars resulting in high Lawson-type confinement parameters of P τ ≃ 10 atm s. Comparisons with radiation-hydrodynamic simulations indicate that the pressure is within a factor of three required for reaching ignition and high yield. This will be the focus of future higher-velocity implosions that will employ additional optimizations of hohlraum, capsule and laser pulse shape conditions.

AB - The first inertial confinement fusion implosion experiments with equimolar deuterium-tritium thermonuclear fuel have been performed on the National Ignition Facility. These experiments use 0.17 mg of fuel with the potential for ignition and significant fusion yield conditions. The thermonuclear fuel has been fielded as a cryogenic layer on the inside of a spherical plastic capsule that is mounted in the center of a cylindrical gold hohlraum. Heating the hohlraum with 192 laser beams for a total laser energy of 1.6 MJ produces a soft x-ray field with 300 eV temperature. The ablation pressure produced by the radiation field compresses the initially 2.2-mm diameter capsule by a factor of 30 to a spherical dense fuel shell that surrounds a central hot-spot plasma of 50 μm diameter. While an extensive set of x-ray and neutron diagnostics has been applied to characterize hot spot formation from the x-ray emission and 14.1 MeV deuterium-tritium primary fusion neutrons, thermonuclear fuel assembly is studied by measuring the down-scattered neutrons with energies in the range of 10 to 12 MeV. X-ray and neutron imaging of the compressed core and fuel indicate a fuel thickness of (14 ± 3) μm, which combined with magnetic recoil spectrometer measurements of the fuel areal density of (1 ± 0.09) g cm-2 result in fuel densities approaching 600 g cm-3. The fuel surrounds a hot-spot plasma with average ion temperatures of (3.5 ± 0.1) keV that is measured with neutron time of flight spectra. The hot-spot plasma produces a total fusion neutron yield of 1015 that is measured with the magnetic recoil spectrometer and nuclear activation diagnostics that indicate a 14.1 MeV yield of (7. 5 ± 0. 1) × 1014 which is 70% to 75% of the total fusion yield due to the high areal density. Gamma ray measurements provide the duration of nuclear activity of (170 ± 30) ps. These indirect-drive implosions result in the highest areal densities and neutron yields achieved on laser facilities to date. This achievement is the result of the first hohlraum and capsule tuning experiments where the stagnation pressures have been systematically increased by more than a factor of 10 by fielding low-entropy implosions through the control of radiation symmetry, small hot electron production, and proper shock timing. The stagnation pressure is above 100 Gbars resulting in high Lawson-type confinement parameters of P τ ≃ 10 atm s. Comparisons with radiation-hydrodynamic simulations indicate that the pressure is within a factor of three required for reaching ignition and high yield. This will be the focus of future higher-velocity implosions that will employ additional optimizations of hohlraum, capsule and laser pulse shape conditions.

UR - http://www.scopus.com/inward/record.url?scp=84862268676&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=84862268676&partnerID=8YFLogxK

U2 - 10.1063/1.4719686

DO - 10.1063/1.4719686

M3 - Article

AN - SCOPUS:84862268676

VL - 19

JO - Physics of Plasmas

JF - Physics of Plasmas

SN - 1070-664X

IS - 5

M1 - 056318

ER -