CRP promotes monocyte-endothelial cell adhesion via Fcγ receptors in human aortic endothelial cells under static and shear flow conditions

Sridevi Devaraj, Benjamin Davis, Scott I. Simon, Ishwarlal Jialal

Research output: Contribution to journalArticle

87 Citations (Scopus)

Abstract

Monocyte-endothelial cell adhesion is a key early event in atherogenesis. C-reactive protein (CRP), a cardiovascular risk marker, is known to stimulate ICAM and VCAM in human aortic endothelial cells (HAEC) and induces monocyte-endothelial cell adhesion. In this study, we examined the mechanisms by which native CRP promotes monocyte-endothelial cell adhesion under static conditions and tested the effect of CRP on adhesion under shear flow. Incubation of HAEC with CRP (>25 μg/ml) upregulated NF-κB activity, and this resulted in a significant increase in ICAM (54% increase, P < 0.001), VCAM (41% increase, P < 0.01), and monocyte-endothelial cell adhesion (44% increase, P < 0.02) compared with those of control. Preincubation with antibodies to CD32 and CD64 but not CD16 effectively inhibited this activation. Blocking NF-κB activity with inhibitors or a dominant negative inhibitory κB significantly decreased ICAM, VCAM upregulation, and subsequent monocyte-endothelial cell adhesion. Preincubation with antibodies to CD32 and CD64 or transient transfection with small interference RNA to CD32 attenuated CRP-induced NF-κB activity, ICAM, VCAM, and monocyte-endothelial cell adhesion under static conditions. Also, the Syk kinase inhibitor piceatannol and MG-132, a proteasome degradation inhibitor, produced similar attenuation in NF-κB activity, ICAM, VCAM, and adhesion. Furthermore, CRP-activated endothelial cells supported monocyte rolling, arrest, and transmigration in shear flow (2 dyn/ cm2), and this was also inhibited by preincubation with antibodies to CD32 and CD64. Thus, in HAEC, CRP upregulates monocyte-endothelial adhesion by activation of NF-κB through engaging the Fcγ receptors CD32 and CD64.

Original languageEnglish (US)
JournalAmerican Journal of Physiology - Heart and Circulatory Physiology
Volume291
Issue number3
DOIs
StatePublished - 2006

Fingerprint

Fc Receptors
Cell Adhesion
C-Reactive Protein
Monocytes
Endothelial Cells
Antibodies
Up-Regulation
Proteasome Inhibitors
RNA Interference
Transfection
Atherosclerosis

Keywords

  • C-reactive protein
  • Human aortic endothelial cells
  • Plasminogen activator inhibitor
  • Tissue-type plasminogen activator

ASJC Scopus subject areas

  • Physiology

Cite this

CRP promotes monocyte-endothelial cell adhesion via Fcγ receptors in human aortic endothelial cells under static and shear flow conditions. / Devaraj, Sridevi; Davis, Benjamin; Simon, Scott I.; Jialal, Ishwarlal.

In: American Journal of Physiology - Heart and Circulatory Physiology, Vol. 291, No. 3, 2006.

Research output: Contribution to journalArticle

@article{1ad748645d2440bbbe400902647b6d48,
title = "CRP promotes monocyte-endothelial cell adhesion via Fcγ receptors in human aortic endothelial cells under static and shear flow conditions",
abstract = "Monocyte-endothelial cell adhesion is a key early event in atherogenesis. C-reactive protein (CRP), a cardiovascular risk marker, is known to stimulate ICAM and VCAM in human aortic endothelial cells (HAEC) and induces monocyte-endothelial cell adhesion. In this study, we examined the mechanisms by which native CRP promotes monocyte-endothelial cell adhesion under static conditions and tested the effect of CRP on adhesion under shear flow. Incubation of HAEC with CRP (>25 μg/ml) upregulated NF-κB activity, and this resulted in a significant increase in ICAM (54{\%} increase, P < 0.001), VCAM (41{\%} increase, P < 0.01), and monocyte-endothelial cell adhesion (44{\%} increase, P < 0.02) compared with those of control. Preincubation with antibodies to CD32 and CD64 but not CD16 effectively inhibited this activation. Blocking NF-κB activity with inhibitors or a dominant negative inhibitory κB significantly decreased ICAM, VCAM upregulation, and subsequent monocyte-endothelial cell adhesion. Preincubation with antibodies to CD32 and CD64 or transient transfection with small interference RNA to CD32 attenuated CRP-induced NF-κB activity, ICAM, VCAM, and monocyte-endothelial cell adhesion under static conditions. Also, the Syk kinase inhibitor piceatannol and MG-132, a proteasome degradation inhibitor, produced similar attenuation in NF-κB activity, ICAM, VCAM, and adhesion. Furthermore, CRP-activated endothelial cells supported monocyte rolling, arrest, and transmigration in shear flow (2 dyn/ cm2), and this was also inhibited by preincubation with antibodies to CD32 and CD64. Thus, in HAEC, CRP upregulates monocyte-endothelial adhesion by activation of NF-κB through engaging the Fcγ receptors CD32 and CD64.",
keywords = "C-reactive protein, Human aortic endothelial cells, Plasminogen activator inhibitor, Tissue-type plasminogen activator",
author = "Sridevi Devaraj and Benjamin Davis and Simon, {Scott I.} and Ishwarlal Jialal",
year = "2006",
doi = "10.1152/ajpheart.00150.2006",
language = "English (US)",
volume = "291",
journal = "American Journal of Physiology - Renal Fluid and Electrolyte Physiology",
issn = "1931-857X",
publisher = "American Physiological Society",
number = "3",

}

TY - JOUR

T1 - CRP promotes monocyte-endothelial cell adhesion via Fcγ receptors in human aortic endothelial cells under static and shear flow conditions

AU - Devaraj, Sridevi

AU - Davis, Benjamin

AU - Simon, Scott I.

AU - Jialal, Ishwarlal

PY - 2006

Y1 - 2006

N2 - Monocyte-endothelial cell adhesion is a key early event in atherogenesis. C-reactive protein (CRP), a cardiovascular risk marker, is known to stimulate ICAM and VCAM in human aortic endothelial cells (HAEC) and induces monocyte-endothelial cell adhesion. In this study, we examined the mechanisms by which native CRP promotes monocyte-endothelial cell adhesion under static conditions and tested the effect of CRP on adhesion under shear flow. Incubation of HAEC with CRP (>25 μg/ml) upregulated NF-κB activity, and this resulted in a significant increase in ICAM (54% increase, P < 0.001), VCAM (41% increase, P < 0.01), and monocyte-endothelial cell adhesion (44% increase, P < 0.02) compared with those of control. Preincubation with antibodies to CD32 and CD64 but not CD16 effectively inhibited this activation. Blocking NF-κB activity with inhibitors or a dominant negative inhibitory κB significantly decreased ICAM, VCAM upregulation, and subsequent monocyte-endothelial cell adhesion. Preincubation with antibodies to CD32 and CD64 or transient transfection with small interference RNA to CD32 attenuated CRP-induced NF-κB activity, ICAM, VCAM, and monocyte-endothelial cell adhesion under static conditions. Also, the Syk kinase inhibitor piceatannol and MG-132, a proteasome degradation inhibitor, produced similar attenuation in NF-κB activity, ICAM, VCAM, and adhesion. Furthermore, CRP-activated endothelial cells supported monocyte rolling, arrest, and transmigration in shear flow (2 dyn/ cm2), and this was also inhibited by preincubation with antibodies to CD32 and CD64. Thus, in HAEC, CRP upregulates monocyte-endothelial adhesion by activation of NF-κB through engaging the Fcγ receptors CD32 and CD64.

AB - Monocyte-endothelial cell adhesion is a key early event in atherogenesis. C-reactive protein (CRP), a cardiovascular risk marker, is known to stimulate ICAM and VCAM in human aortic endothelial cells (HAEC) and induces monocyte-endothelial cell adhesion. In this study, we examined the mechanisms by which native CRP promotes monocyte-endothelial cell adhesion under static conditions and tested the effect of CRP on adhesion under shear flow. Incubation of HAEC with CRP (>25 μg/ml) upregulated NF-κB activity, and this resulted in a significant increase in ICAM (54% increase, P < 0.001), VCAM (41% increase, P < 0.01), and monocyte-endothelial cell adhesion (44% increase, P < 0.02) compared with those of control. Preincubation with antibodies to CD32 and CD64 but not CD16 effectively inhibited this activation. Blocking NF-κB activity with inhibitors or a dominant negative inhibitory κB significantly decreased ICAM, VCAM upregulation, and subsequent monocyte-endothelial cell adhesion. Preincubation with antibodies to CD32 and CD64 or transient transfection with small interference RNA to CD32 attenuated CRP-induced NF-κB activity, ICAM, VCAM, and monocyte-endothelial cell adhesion under static conditions. Also, the Syk kinase inhibitor piceatannol and MG-132, a proteasome degradation inhibitor, produced similar attenuation in NF-κB activity, ICAM, VCAM, and adhesion. Furthermore, CRP-activated endothelial cells supported monocyte rolling, arrest, and transmigration in shear flow (2 dyn/ cm2), and this was also inhibited by preincubation with antibodies to CD32 and CD64. Thus, in HAEC, CRP upregulates monocyte-endothelial adhesion by activation of NF-κB through engaging the Fcγ receptors CD32 and CD64.

KW - C-reactive protein

KW - Human aortic endothelial cells

KW - Plasminogen activator inhibitor

KW - Tissue-type plasminogen activator

UR - http://www.scopus.com/inward/record.url?scp=33748417874&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=33748417874&partnerID=8YFLogxK

U2 - 10.1152/ajpheart.00150.2006

DO - 10.1152/ajpheart.00150.2006

M3 - Article

C2 - 16603696

AN - SCOPUS:33748417874

VL - 291

JO - American Journal of Physiology - Renal Fluid and Electrolyte Physiology

JF - American Journal of Physiology - Renal Fluid and Electrolyte Physiology

SN - 1931-857X

IS - 3

ER -