Coyotes demonstrate how habitat specialization by individuals of a generalist species can diversify populations in a heterogeneous ecoregion

Research output: Contribution to journalArticle

54 Scopus citations

Abstract

The tendency for individuals to disperse into habitat similar to their natal habitat has been observed in a wide range of species, although its population genetic consequences have received little study. Such behavior could lead to discrete habitat-specific population subdivisions even in the absence of physical dispersal barriers or habitat gaps. Previous studies of coyotes have supported this hypothesis in a small region of California, but its evolutionary significance ultimately depends on the extent and magnitude of habitat-specific subdivision. Here, we investigated these questions using autosomal, Y chromosome, and mitochondrial markers and >2,000 coyotes from a broad region, including 2 adjacent ecoregions with contrasting levels of habitat heterogeneity - the California Floristic Province (CFP) (heterogeneous landscape) and the Desert-Prairie ecoregion (DPE) (homogeneous landscape). Consistent with predictions, we found a close correspondence between population genetic structure and habitat subdivisions throughout the CFP and virtual panmixia over the larger DPE. Conversely, although genetic diversity was similar in these 2 ecoregions overall, it was lower within sites of the CFP, as would be the expected consequence of greater genetic drift within subregions. The magnitude of habitat-specific genetic subdivisions (i.e., genetic distance) in the CFP varied considerably, indicating complexity (e.g., asymmetric gene flow or extinction/recolonization), but, in general, was higher than that due to geographic distance or recent human-related barriers. Because habitat-specific structure can enhance a species' adaptive potential and resilience to changing environments, these findings suggest the CFP may constitute an evolutionarily important portion of the range for coyotes and sympatric species exhibiting habitat-specific population structure.

Original languageEnglish (US)
Pages (from-to)1384-1394
Number of pages11
JournalMolecular Biology and Evolution
Volume25
Issue number7
DOIs
StatePublished - Jul 2008

    Fingerprint

Keywords

  • Canis latrans
  • Gene flow
  • Genetic diversity
  • Genetic structure
  • Habitat
  • Isolation-by-distance

ASJC Scopus subject areas

  • Genetics
  • Biochemistry
  • Genetics(clinical)
  • Biochemistry, Genetics and Molecular Biology(all)
  • Ecology, Evolution, Behavior and Systematics
  • Agricultural and Biological Sciences (miscellaneous)
  • Molecular Biology

Cite this