Abstract
The tendency for individuals to disperse into habitat similar to their natal habitat has been observed in a wide range of species, although its population genetic consequences have received little study. Such behavior could lead to discrete habitat-specific population subdivisions even in the absence of physical dispersal barriers or habitat gaps. Previous studies of coyotes have supported this hypothesis in a small region of California, but its evolutionary significance ultimately depends on the extent and magnitude of habitat-specific subdivision. Here, we investigated these questions using autosomal, Y chromosome, and mitochondrial markers and >2,000 coyotes from a broad region, including 2 adjacent ecoregions with contrasting levels of habitat heterogeneity - the California Floristic Province (CFP) (heterogeneous landscape) and the Desert-Prairie ecoregion (DPE) (homogeneous landscape). Consistent with predictions, we found a close correspondence between population genetic structure and habitat subdivisions throughout the CFP and virtual panmixia over the larger DPE. Conversely, although genetic diversity was similar in these 2 ecoregions overall, it was lower within sites of the CFP, as would be the expected consequence of greater genetic drift within subregions. The magnitude of habitat-specific genetic subdivisions (i.e., genetic distance) in the CFP varied considerably, indicating complexity (e.g., asymmetric gene flow or extinction/recolonization), but, in general, was higher than that due to geographic distance or recent human-related barriers. Because habitat-specific structure can enhance a species' adaptive potential and resilience to changing environments, these findings suggest the CFP may constitute an evolutionarily important portion of the range for coyotes and sympatric species exhibiting habitat-specific population structure.
Original language | English (US) |
---|---|
Pages (from-to) | 1384-1394 |
Number of pages | 11 |
Journal | Molecular Biology and Evolution |
Volume | 25 |
Issue number | 7 |
DOIs | |
State | Published - Jul 2008 |
Keywords
- Canis latrans
- Gene flow
- Genetic diversity
- Genetic structure
- Habitat
- Isolation-by-distance
ASJC Scopus subject areas
- Genetics
- Biochemistry
- Genetics(clinical)
- Biochemistry, Genetics and Molecular Biology(all)
- Ecology, Evolution, Behavior and Systematics
- Agricultural and Biological Sciences (miscellaneous)
- Molecular Biology