Core flexibility of a truncated metazoan mitochondrial tRNA.

Ashley A. Frazer-Abel, Paul J Hagerman

Research output: Contribution to journalArticlepeer-review

9 Scopus citations


Secondary and tertiary structures of tRNAs are remarkably preserved from bacteria to humans, the notable exception being the mitochondrial (m) tRNAs of metazoans, which often deviate substantially from the canonical cloverleaf (secondary) or 'L'-shaped (tertiary) structure. Many metazoan mtRNAs lack either the TpsiC (T) or dihydrouridine (D) loops of the canonical cloverleaf, which are known to confer structural rigidity to the folded structure. Thus, the absence of canonical TpsiC-D interactions likely results in greater dispersion of anticodon-acceptor interstem angle than for canonical tRNAs. To test this hypothesis, we have assessed the dispersion of the anticodon-acceptor angle for bovine mtRNA(Ser)(AGY), which lacks the canonical D arm and is thus incapable of forming stabilizing interarm interactions. Using the method of transient electric birefringence (TEB), and by changing the helical torsion angle between a core mtRNA bend and a second bend of known angle/rigidity, we have demonstrated that the core of mtRNA(Ser)(AGY) has substantially greater flexibility than its well-characterized canonical counterpart, yeast cytoplasmic tRNA(Phe). These results suggest that increased flexibility, in addition to a more open interstem angle, would allow both noncanonical and canonical mtRNAs to utilize the same protein synthetic apparatus.

Original languageEnglish (US)
Pages (from-to)5472-5481
Number of pages10
JournalNucleic Acids Research
Issue number17
StatePublished - Oct 2008
Externally publishedYes

ASJC Scopus subject areas

  • Genetics


Dive into the research topics of 'Core flexibility of a truncated metazoan mitochondrial tRNA.'. Together they form a unique fingerprint.

Cite this