Contribution of individual cytochrome P450 isozymes to the O-demethylation of the psychotropic β-carboline alkaloids harmaline and harmine

Aiming Yu, Jeffrey R. Idle, Kristopher W. Krausz, Adrian Küpfer, Frank J. Gonzalez

Research output: Contribution to journalArticle

97 Citations (Scopus)

Abstract

The psychotropic β-carboline alkaloids, showing high affinity for 5-hydroxytryptamine, dopamine, benzodiazepine, and imidazoline receptors and the stimulation of locus coeruleus neurons, are formed endogenously from tryptophan-derived indolealkylamines through the Pictet-Spengler condensation with aldehydes in both plants and mammals. Cytochromes P450 1A1 (18.5), 1A2 (20), and 2D6 (100) catalyzed the O-demethylation of harmaline, and CYP1A1 (98.5), CYP1A2 (35), CYP2C9 (16), CYP2C19 (30), and CYP2D6 (115) catalyzed that of harmine (relative activities). The dehydrogenation/aromatization of harmaline to harmine was not carried out by aromatase (CYP19), CYP1A2, CYP2C9, CYP2D6, CYP3A4, pooled recombinant cytochromes P450, or human liver microsomes (HLMs). Kinetic parameters were calculated for the O-demethylations mediated by each isozyme and by pooled HLMs. Kcat (min-1) and Km (μM) values for harmaline were: CYP1A1, 10.8 and 11.8; CYP1A2, 12.3 and 13.3; CYP2C9, 5.3 and 175; CYP2C19, 10.3 and 160; and CYP2D6, 39.9 and 1.4. Values for harmine were: CYP1A1, 45.2 and 52.2; CYP1A2, 9.2 and 14.7; CYP2C9, 11.9 and 117; CYP2C19, 21.4 and 121; and CYP2D6, 29.7 and 7.4. Inhibition studies using monoclonal antibodies confirmed that CYP1A2 and CYP2D6 were the major isozymes contributing to both harmaline (20% and 50%, respectively) and harmine (20% and 30%) O-demethylations in pooled HLMS. The turnover numbers for CYP2D6 are among the highest ever reported for a CYP2D6 substrate. Finally, CYP2D6-transgenic mice were found to have increased harmaline and harmine O-demethylase activities as compared with wild-type mice. These findings suggest a role for polymorphic CYP2D6 in the pharmacology and toxicology of harmine and harmaline.

Original languageEnglish (US)
Pages (from-to)315-322
Number of pages8
JournalJournal of Pharmacology and Experimental Therapeutics
Volume305
Issue number1
DOIs
StatePublished - Apr 1 2003
Externally publishedYes

Fingerprint

Harmine
Harmaline
Carbolines
Cytochrome P-450 CYP2D6
Alkaloids
Cytochrome P-450 Enzyme System
Isoenzymes
Cytochrome P-450 CYP1A2
Cytochrome P-450 CYP1A1
Aromatase
Liver Microsomes
O Demethylating Oxidoreductases
Imidazoline Receptors
Cytochrome P-450 CYP3A
Locus Coeruleus
Serotonin Receptors
Dopamine Receptors
GABA-A Receptors
Aldehydes
Tryptophan

ASJC Scopus subject areas

  • Pharmacology

Cite this

Contribution of individual cytochrome P450 isozymes to the O-demethylation of the psychotropic β-carboline alkaloids harmaline and harmine. / Yu, Aiming; Idle, Jeffrey R.; Krausz, Kristopher W.; Küpfer, Adrian; Gonzalez, Frank J.

In: Journal of Pharmacology and Experimental Therapeutics, Vol. 305, No. 1, 01.04.2003, p. 315-322.

Research output: Contribution to journalArticle

@article{9c22376025ee47708968a9c0a9dde4f6,
title = "Contribution of individual cytochrome P450 isozymes to the O-demethylation of the psychotropic β-carboline alkaloids harmaline and harmine",
abstract = "The psychotropic β-carboline alkaloids, showing high affinity for 5-hydroxytryptamine, dopamine, benzodiazepine, and imidazoline receptors and the stimulation of locus coeruleus neurons, are formed endogenously from tryptophan-derived indolealkylamines through the Pictet-Spengler condensation with aldehydes in both plants and mammals. Cytochromes P450 1A1 (18.5), 1A2 (20), and 2D6 (100) catalyzed the O-demethylation of harmaline, and CYP1A1 (98.5), CYP1A2 (35), CYP2C9 (16), CYP2C19 (30), and CYP2D6 (115) catalyzed that of harmine (relative activities). The dehydrogenation/aromatization of harmaline to harmine was not carried out by aromatase (CYP19), CYP1A2, CYP2C9, CYP2D6, CYP3A4, pooled recombinant cytochromes P450, or human liver microsomes (HLMs). Kinetic parameters were calculated for the O-demethylations mediated by each isozyme and by pooled HLMs. Kcat (min-1) and Km (μM) values for harmaline were: CYP1A1, 10.8 and 11.8; CYP1A2, 12.3 and 13.3; CYP2C9, 5.3 and 175; CYP2C19, 10.3 and 160; and CYP2D6, 39.9 and 1.4. Values for harmine were: CYP1A1, 45.2 and 52.2; CYP1A2, 9.2 and 14.7; CYP2C9, 11.9 and 117; CYP2C19, 21.4 and 121; and CYP2D6, 29.7 and 7.4. Inhibition studies using monoclonal antibodies confirmed that CYP1A2 and CYP2D6 were the major isozymes contributing to both harmaline (20{\%} and 50{\%}, respectively) and harmine (20{\%} and 30{\%}) O-demethylations in pooled HLMS. The turnover numbers for CYP2D6 are among the highest ever reported for a CYP2D6 substrate. Finally, CYP2D6-transgenic mice were found to have increased harmaline and harmine O-demethylase activities as compared with wild-type mice. These findings suggest a role for polymorphic CYP2D6 in the pharmacology and toxicology of harmine and harmaline.",
author = "Aiming Yu and Idle, {Jeffrey R.} and Krausz, {Kristopher W.} and Adrian K{\"u}pfer and Gonzalez, {Frank J.}",
year = "2003",
month = "4",
day = "1",
doi = "10.1124/jpet.102.047050",
language = "English (US)",
volume = "305",
pages = "315--322",
journal = "Journal of Pharmacology and Experimental Therapeutics",
issn = "0022-3565",
publisher = "American Society for Pharmacology and Experimental Therapeutics",
number = "1",

}

TY - JOUR

T1 - Contribution of individual cytochrome P450 isozymes to the O-demethylation of the psychotropic β-carboline alkaloids harmaline and harmine

AU - Yu, Aiming

AU - Idle, Jeffrey R.

AU - Krausz, Kristopher W.

AU - Küpfer, Adrian

AU - Gonzalez, Frank J.

PY - 2003/4/1

Y1 - 2003/4/1

N2 - The psychotropic β-carboline alkaloids, showing high affinity for 5-hydroxytryptamine, dopamine, benzodiazepine, and imidazoline receptors and the stimulation of locus coeruleus neurons, are formed endogenously from tryptophan-derived indolealkylamines through the Pictet-Spengler condensation with aldehydes in both plants and mammals. Cytochromes P450 1A1 (18.5), 1A2 (20), and 2D6 (100) catalyzed the O-demethylation of harmaline, and CYP1A1 (98.5), CYP1A2 (35), CYP2C9 (16), CYP2C19 (30), and CYP2D6 (115) catalyzed that of harmine (relative activities). The dehydrogenation/aromatization of harmaline to harmine was not carried out by aromatase (CYP19), CYP1A2, CYP2C9, CYP2D6, CYP3A4, pooled recombinant cytochromes P450, or human liver microsomes (HLMs). Kinetic parameters were calculated for the O-demethylations mediated by each isozyme and by pooled HLMs. Kcat (min-1) and Km (μM) values for harmaline were: CYP1A1, 10.8 and 11.8; CYP1A2, 12.3 and 13.3; CYP2C9, 5.3 and 175; CYP2C19, 10.3 and 160; and CYP2D6, 39.9 and 1.4. Values for harmine were: CYP1A1, 45.2 and 52.2; CYP1A2, 9.2 and 14.7; CYP2C9, 11.9 and 117; CYP2C19, 21.4 and 121; and CYP2D6, 29.7 and 7.4. Inhibition studies using monoclonal antibodies confirmed that CYP1A2 and CYP2D6 were the major isozymes contributing to both harmaline (20% and 50%, respectively) and harmine (20% and 30%) O-demethylations in pooled HLMS. The turnover numbers for CYP2D6 are among the highest ever reported for a CYP2D6 substrate. Finally, CYP2D6-transgenic mice were found to have increased harmaline and harmine O-demethylase activities as compared with wild-type mice. These findings suggest a role for polymorphic CYP2D6 in the pharmacology and toxicology of harmine and harmaline.

AB - The psychotropic β-carboline alkaloids, showing high affinity for 5-hydroxytryptamine, dopamine, benzodiazepine, and imidazoline receptors and the stimulation of locus coeruleus neurons, are formed endogenously from tryptophan-derived indolealkylamines through the Pictet-Spengler condensation with aldehydes in both plants and mammals. Cytochromes P450 1A1 (18.5), 1A2 (20), and 2D6 (100) catalyzed the O-demethylation of harmaline, and CYP1A1 (98.5), CYP1A2 (35), CYP2C9 (16), CYP2C19 (30), and CYP2D6 (115) catalyzed that of harmine (relative activities). The dehydrogenation/aromatization of harmaline to harmine was not carried out by aromatase (CYP19), CYP1A2, CYP2C9, CYP2D6, CYP3A4, pooled recombinant cytochromes P450, or human liver microsomes (HLMs). Kinetic parameters were calculated for the O-demethylations mediated by each isozyme and by pooled HLMs. Kcat (min-1) and Km (μM) values for harmaline were: CYP1A1, 10.8 and 11.8; CYP1A2, 12.3 and 13.3; CYP2C9, 5.3 and 175; CYP2C19, 10.3 and 160; and CYP2D6, 39.9 and 1.4. Values for harmine were: CYP1A1, 45.2 and 52.2; CYP1A2, 9.2 and 14.7; CYP2C9, 11.9 and 117; CYP2C19, 21.4 and 121; and CYP2D6, 29.7 and 7.4. Inhibition studies using monoclonal antibodies confirmed that CYP1A2 and CYP2D6 were the major isozymes contributing to both harmaline (20% and 50%, respectively) and harmine (20% and 30%) O-demethylations in pooled HLMS. The turnover numbers for CYP2D6 are among the highest ever reported for a CYP2D6 substrate. Finally, CYP2D6-transgenic mice were found to have increased harmaline and harmine O-demethylase activities as compared with wild-type mice. These findings suggest a role for polymorphic CYP2D6 in the pharmacology and toxicology of harmine and harmaline.

UR - http://www.scopus.com/inward/record.url?scp=0037381219&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=0037381219&partnerID=8YFLogxK

U2 - 10.1124/jpet.102.047050

DO - 10.1124/jpet.102.047050

M3 - Article

C2 - 12649384

AN - SCOPUS:0037381219

VL - 305

SP - 315

EP - 322

JO - Journal of Pharmacology and Experimental Therapeutics

JF - Journal of Pharmacology and Experimental Therapeutics

SN - 0022-3565

IS - 1

ER -