Comparative genomic analysis of the thermophilic biomass-degrading fungi Myceliophthora thermophila and Thielavia terrestris

Randy M. Berka, Igor V. Grigoriev, Robert Otillar, Asaf Salamov, Jane Grimwood, Ian Reid, Nadeeza Ishmael, Tricia John, Corinne Darmond, Marie Claude Moisan, Bernard Henrissat, Pedro M. Coutinho, Vincent Lombard, Donald O. Natvig, Erika Lindquist, Jeremy Schmutz, Susan Lucas, Paul Harris, Justin Powlowski, Annie Bellemare & 19 others David Taylor, Gregory Butler, Ronald P. De Vries, Iris E. Allijn, Joost Van Den Brink, Sophia Ushinsky, Reginald Storms, Amy J. Powell, Ian T. Paulsen, Liam D H Elbourne, Scott E. Baker, Jon Magnuson, Sylvie Laboissiere, A. John Clutterbuck, Diego Martinez, Mark Wogulis, Alfredo Lopez De Leon, Michael W. Rey, Adrian Tsang

Research output: Contribution to journalArticle

215 Citations (Scopus)

Abstract

Thermostable enzymes and thermophilic cell factories may afford economic advantages in the production of many chemicals and biomass-based fuels. Here we describe and compare the genomes of two thermophilic fungi, Myceliophthora thermophila and Thielavia terrestris. To our knowledge, these genomes are the first described for thermophilic eukaryotes and the first complete telomere-to-telomere genomes for filamentous fungi. Genome analyses and experimental data suggest that both thermophiles are capable of hydrolyzing all major polysaccharides found in biomass. Examination of transcriptome data and secreted proteins suggests that the two fungi use shared approaches in the hydrolysis of cellulose and xylan but distinct mechanisms in pectin degradation. Characterization of the biomass-hydrolyzing activity of recombinant enzymes suggests that these organisms are highly efficient in biomass decomposition at both moderate and high temperatures. Furthermore, we present evidence suggesting that aside from representing a potential reservoir of thermostable enzymes, thermophilic fungi are amenable to manipulation using classical and molecular genetics.

Original languageEnglish (US)
Pages (from-to)922-929
Number of pages8
JournalNature Biotechnology
Volume29
Issue number10
DOIs
StatePublished - Oct 2011
Externally publishedYes

Fingerprint

Fungi
Biomass
Genes
Genome
Enzymes
Telomere
Xylans
Polysaccharides
Eukaryota
Transcriptome
Cellulose
Industrial plants
Molecular Biology
Hydrolysis
Economics
Decomposition
Proteins
Degradation
Temperature

ASJC Scopus subject areas

  • Applied Microbiology and Biotechnology
  • Biotechnology
  • Molecular Medicine
  • Bioengineering
  • Biomedical Engineering

Cite this

Berka, R. M., Grigoriev, I. V., Otillar, R., Salamov, A., Grimwood, J., Reid, I., ... Tsang, A. (2011). Comparative genomic analysis of the thermophilic biomass-degrading fungi Myceliophthora thermophila and Thielavia terrestris. Nature Biotechnology, 29(10), 922-929. https://doi.org/10.1038/nbt.1976

Comparative genomic analysis of the thermophilic biomass-degrading fungi Myceliophthora thermophila and Thielavia terrestris. / Berka, Randy M.; Grigoriev, Igor V.; Otillar, Robert; Salamov, Asaf; Grimwood, Jane; Reid, Ian; Ishmael, Nadeeza; John, Tricia; Darmond, Corinne; Moisan, Marie Claude; Henrissat, Bernard; Coutinho, Pedro M.; Lombard, Vincent; Natvig, Donald O.; Lindquist, Erika; Schmutz, Jeremy; Lucas, Susan; Harris, Paul; Powlowski, Justin; Bellemare, Annie; Taylor, David; Butler, Gregory; De Vries, Ronald P.; Allijn, Iris E.; Van Den Brink, Joost; Ushinsky, Sophia; Storms, Reginald; Powell, Amy J.; Paulsen, Ian T.; Elbourne, Liam D H; Baker, Scott E.; Magnuson, Jon; Laboissiere, Sylvie; Clutterbuck, A. John; Martinez, Diego; Wogulis, Mark; De Leon, Alfredo Lopez; Rey, Michael W.; Tsang, Adrian.

In: Nature Biotechnology, Vol. 29, No. 10, 10.2011, p. 922-929.

Research output: Contribution to journalArticle

Berka, RM, Grigoriev, IV, Otillar, R, Salamov, A, Grimwood, J, Reid, I, Ishmael, N, John, T, Darmond, C, Moisan, MC, Henrissat, B, Coutinho, PM, Lombard, V, Natvig, DO, Lindquist, E, Schmutz, J, Lucas, S, Harris, P, Powlowski, J, Bellemare, A, Taylor, D, Butler, G, De Vries, RP, Allijn, IE, Van Den Brink, J, Ushinsky, S, Storms, R, Powell, AJ, Paulsen, IT, Elbourne, LDH, Baker, SE, Magnuson, J, Laboissiere, S, Clutterbuck, AJ, Martinez, D, Wogulis, M, De Leon, AL, Rey, MW & Tsang, A 2011, 'Comparative genomic analysis of the thermophilic biomass-degrading fungi Myceliophthora thermophila and Thielavia terrestris', Nature Biotechnology, vol. 29, no. 10, pp. 922-929. https://doi.org/10.1038/nbt.1976
Berka, Randy M. ; Grigoriev, Igor V. ; Otillar, Robert ; Salamov, Asaf ; Grimwood, Jane ; Reid, Ian ; Ishmael, Nadeeza ; John, Tricia ; Darmond, Corinne ; Moisan, Marie Claude ; Henrissat, Bernard ; Coutinho, Pedro M. ; Lombard, Vincent ; Natvig, Donald O. ; Lindquist, Erika ; Schmutz, Jeremy ; Lucas, Susan ; Harris, Paul ; Powlowski, Justin ; Bellemare, Annie ; Taylor, David ; Butler, Gregory ; De Vries, Ronald P. ; Allijn, Iris E. ; Van Den Brink, Joost ; Ushinsky, Sophia ; Storms, Reginald ; Powell, Amy J. ; Paulsen, Ian T. ; Elbourne, Liam D H ; Baker, Scott E. ; Magnuson, Jon ; Laboissiere, Sylvie ; Clutterbuck, A. John ; Martinez, Diego ; Wogulis, Mark ; De Leon, Alfredo Lopez ; Rey, Michael W. ; Tsang, Adrian. / Comparative genomic analysis of the thermophilic biomass-degrading fungi Myceliophthora thermophila and Thielavia terrestris. In: Nature Biotechnology. 2011 ; Vol. 29, No. 10. pp. 922-929.
@article{2dfde81bf15b4fbcb43dfaf45a1a5729,
title = "Comparative genomic analysis of the thermophilic biomass-degrading fungi Myceliophthora thermophila and Thielavia terrestris",
abstract = "Thermostable enzymes and thermophilic cell factories may afford economic advantages in the production of many chemicals and biomass-based fuels. Here we describe and compare the genomes of two thermophilic fungi, Myceliophthora thermophila and Thielavia terrestris. To our knowledge, these genomes are the first described for thermophilic eukaryotes and the first complete telomere-to-telomere genomes for filamentous fungi. Genome analyses and experimental data suggest that both thermophiles are capable of hydrolyzing all major polysaccharides found in biomass. Examination of transcriptome data and secreted proteins suggests that the two fungi use shared approaches in the hydrolysis of cellulose and xylan but distinct mechanisms in pectin degradation. Characterization of the biomass-hydrolyzing activity of recombinant enzymes suggests that these organisms are highly efficient in biomass decomposition at both moderate and high temperatures. Furthermore, we present evidence suggesting that aside from representing a potential reservoir of thermostable enzymes, thermophilic fungi are amenable to manipulation using classical and molecular genetics.",
author = "Berka, {Randy M.} and Grigoriev, {Igor V.} and Robert Otillar and Asaf Salamov and Jane Grimwood and Ian Reid and Nadeeza Ishmael and Tricia John and Corinne Darmond and Moisan, {Marie Claude} and Bernard Henrissat and Coutinho, {Pedro M.} and Vincent Lombard and Natvig, {Donald O.} and Erika Lindquist and Jeremy Schmutz and Susan Lucas and Paul Harris and Justin Powlowski and Annie Bellemare and David Taylor and Gregory Butler and {De Vries}, {Ronald P.} and Allijn, {Iris E.} and {Van Den Brink}, Joost and Sophia Ushinsky and Reginald Storms and Powell, {Amy J.} and Paulsen, {Ian T.} and Elbourne, {Liam D H} and Baker, {Scott E.} and Jon Magnuson and Sylvie Laboissiere and Clutterbuck, {A. John} and Diego Martinez and Mark Wogulis and {De Leon}, {Alfredo Lopez} and Rey, {Michael W.} and Adrian Tsang",
year = "2011",
month = "10",
doi = "10.1038/nbt.1976",
language = "English (US)",
volume = "29",
pages = "922--929",
journal = "Biotechnology",
issn = "1087-0156",
publisher = "Nature Publishing Group",
number = "10",

}

TY - JOUR

T1 - Comparative genomic analysis of the thermophilic biomass-degrading fungi Myceliophthora thermophila and Thielavia terrestris

AU - Berka, Randy M.

AU - Grigoriev, Igor V.

AU - Otillar, Robert

AU - Salamov, Asaf

AU - Grimwood, Jane

AU - Reid, Ian

AU - Ishmael, Nadeeza

AU - John, Tricia

AU - Darmond, Corinne

AU - Moisan, Marie Claude

AU - Henrissat, Bernard

AU - Coutinho, Pedro M.

AU - Lombard, Vincent

AU - Natvig, Donald O.

AU - Lindquist, Erika

AU - Schmutz, Jeremy

AU - Lucas, Susan

AU - Harris, Paul

AU - Powlowski, Justin

AU - Bellemare, Annie

AU - Taylor, David

AU - Butler, Gregory

AU - De Vries, Ronald P.

AU - Allijn, Iris E.

AU - Van Den Brink, Joost

AU - Ushinsky, Sophia

AU - Storms, Reginald

AU - Powell, Amy J.

AU - Paulsen, Ian T.

AU - Elbourne, Liam D H

AU - Baker, Scott E.

AU - Magnuson, Jon

AU - Laboissiere, Sylvie

AU - Clutterbuck, A. John

AU - Martinez, Diego

AU - Wogulis, Mark

AU - De Leon, Alfredo Lopez

AU - Rey, Michael W.

AU - Tsang, Adrian

PY - 2011/10

Y1 - 2011/10

N2 - Thermostable enzymes and thermophilic cell factories may afford economic advantages in the production of many chemicals and biomass-based fuels. Here we describe and compare the genomes of two thermophilic fungi, Myceliophthora thermophila and Thielavia terrestris. To our knowledge, these genomes are the first described for thermophilic eukaryotes and the first complete telomere-to-telomere genomes for filamentous fungi. Genome analyses and experimental data suggest that both thermophiles are capable of hydrolyzing all major polysaccharides found in biomass. Examination of transcriptome data and secreted proteins suggests that the two fungi use shared approaches in the hydrolysis of cellulose and xylan but distinct mechanisms in pectin degradation. Characterization of the biomass-hydrolyzing activity of recombinant enzymes suggests that these organisms are highly efficient in biomass decomposition at both moderate and high temperatures. Furthermore, we present evidence suggesting that aside from representing a potential reservoir of thermostable enzymes, thermophilic fungi are amenable to manipulation using classical and molecular genetics.

AB - Thermostable enzymes and thermophilic cell factories may afford economic advantages in the production of many chemicals and biomass-based fuels. Here we describe and compare the genomes of two thermophilic fungi, Myceliophthora thermophila and Thielavia terrestris. To our knowledge, these genomes are the first described for thermophilic eukaryotes and the first complete telomere-to-telomere genomes for filamentous fungi. Genome analyses and experimental data suggest that both thermophiles are capable of hydrolyzing all major polysaccharides found in biomass. Examination of transcriptome data and secreted proteins suggests that the two fungi use shared approaches in the hydrolysis of cellulose and xylan but distinct mechanisms in pectin degradation. Characterization of the biomass-hydrolyzing activity of recombinant enzymes suggests that these organisms are highly efficient in biomass decomposition at both moderate and high temperatures. Furthermore, we present evidence suggesting that aside from representing a potential reservoir of thermostable enzymes, thermophilic fungi are amenable to manipulation using classical and molecular genetics.

UR - http://www.scopus.com/inward/record.url?scp=80054733932&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=80054733932&partnerID=8YFLogxK

U2 - 10.1038/nbt.1976

DO - 10.1038/nbt.1976

M3 - Article

VL - 29

SP - 922

EP - 929

JO - Biotechnology

JF - Biotechnology

SN - 1087-0156

IS - 10

ER -