Clustered burst firing in FMR1 premutation hippocampal neurons: Amelioration with allopregnanolone

Zhengyu Cao, Susan Hulsizer, Flora Tassone, Hiu Tung Tang, Randi J Hagerman, Michael A Rogawski, Paul J Hagerman, Isaac N Pessah

Research output: Contribution to journalArticle

55 Citations (Scopus)

Abstract

Premutation CGG repeat expansions (55-200 CGG repeats; preCGG) within the fragile X mental retardation 1 (FMR1) gene cause fragile X-associated tremor/ataxia syndrome (FXTAS). Defects in neuronal morphology and migration have been described in a preCGG mouse model. Mouse preCGG hippocampal neurons (170 CGG repeats) grown in vitro develop abnormal networks of clustered burst (CB) firing, as assessed by multielectrode array recordings and clustered patterns of spontaneous Ca2+ oscillations, neither typical of wild-type (WT) neurons. PreCGG neurons have reduced expression of vesicular GABA and glutamate (Glu) transporters (VGAT and VGLUT1, respectively), and preCGG hippocampal astrocytes display a rightward shift on Glu uptake kinetics, compared with WT. These alterations in preCGG astrocytes and neurons are associated with 4- to 8-fold elevated Fmr1 mRNA and occur despite consistent expression of fragile X mental retardation protein levels at ~50% of WT levels. Abnormal patterns of activity observed in preCGG neurons are pharmacologically mimicked in WT neurons by addition of Glu or the mGluR1/5 agonist, dihydroxyphenylglycine, to the medium, or by inhibition of astrocytic Glu uptake with dl-threo-β-benzyloxyaspartic acid, but not by the ionotropic Glu receptor agonists, α-2-amino-3-(5-methyl-3-oxo-1,2-oxazol-4-yl) propanoic acid or N-methyl-d-aspartic acid. The mGluR1 (7-(hydroxyimino)cyclopropa [b]chromen-1a-carboxylate ethyl ester) or mGluR5 (2-methyl-6-(phenylethynyl)pyridine hydrochloride) antagonists reversed CB firing. Importantly, the acute addition of the neurosteroid allopregnanolone mitigated functional impairments observed in preCGG neurons in a reversible manner. These results demonstrate abnormal mGluR1/5 signaling in preCGG neurons, which is ameliorated by mGluR1/5 antagonists or augmentation of GABAA receptor signaling, and identify allopregnanolone as a candidate therapeutic lead.

Original languageEnglish (US)
Article numberdds118
Pages (from-to)2923-2935
Number of pages13
JournalHuman Molecular Genetics
Volume21
Issue number13
DOIs
StatePublished - Jul 2012

Fingerprint

Pregnanolone
Intellectual Disability
Neurons
Glutamic Acid
Astrocytes
Vesicular Glutamate Transport Proteins
Fragile X Mental Retardation Protein
Excitatory Amino Acid Agonists
Ionotropic Glutamate Receptors
GABA-A Receptors
Aspartic Acid
Neurotransmitter Agents
Esters
Messenger RNA
Acids
metabotropic glutamate receptor type 1

ASJC Scopus subject areas

  • Genetics
  • Genetics(clinical)
  • Molecular Biology

Cite this

Clustered burst firing in FMR1 premutation hippocampal neurons : Amelioration with allopregnanolone. / Cao, Zhengyu; Hulsizer, Susan; Tassone, Flora; Tang, Hiu Tung; Hagerman, Randi J; Rogawski, Michael A; Hagerman, Paul J; Pessah, Isaac N.

In: Human Molecular Genetics, Vol. 21, No. 13, dds118, 07.2012, p. 2923-2935.

Research output: Contribution to journalArticle

@article{ea146f4a85e74e0da443921bb027962d,
title = "Clustered burst firing in FMR1 premutation hippocampal neurons: Amelioration with allopregnanolone",
abstract = "Premutation CGG repeat expansions (55-200 CGG repeats; preCGG) within the fragile X mental retardation 1 (FMR1) gene cause fragile X-associated tremor/ataxia syndrome (FXTAS). Defects in neuronal morphology and migration have been described in a preCGG mouse model. Mouse preCGG hippocampal neurons (170 CGG repeats) grown in vitro develop abnormal networks of clustered burst (CB) firing, as assessed by multielectrode array recordings and clustered patterns of spontaneous Ca2+ oscillations, neither typical of wild-type (WT) neurons. PreCGG neurons have reduced expression of vesicular GABA and glutamate (Glu) transporters (VGAT and VGLUT1, respectively), and preCGG hippocampal astrocytes display a rightward shift on Glu uptake kinetics, compared with WT. These alterations in preCGG astrocytes and neurons are associated with 4- to 8-fold elevated Fmr1 mRNA and occur despite consistent expression of fragile X mental retardation protein levels at ~50{\%} of WT levels. Abnormal patterns of activity observed in preCGG neurons are pharmacologically mimicked in WT neurons by addition of Glu or the mGluR1/5 agonist, dihydroxyphenylglycine, to the medium, or by inhibition of astrocytic Glu uptake with dl-threo-β-benzyloxyaspartic acid, but not by the ionotropic Glu receptor agonists, α-2-amino-3-(5-methyl-3-oxo-1,2-oxazol-4-yl) propanoic acid or N-methyl-d-aspartic acid. The mGluR1 (7-(hydroxyimino)cyclopropa [b]chromen-1a-carboxylate ethyl ester) or mGluR5 (2-methyl-6-(phenylethynyl)pyridine hydrochloride) antagonists reversed CB firing. Importantly, the acute addition of the neurosteroid allopregnanolone mitigated functional impairments observed in preCGG neurons in a reversible manner. These results demonstrate abnormal mGluR1/5 signaling in preCGG neurons, which is ameliorated by mGluR1/5 antagonists or augmentation of GABAA receptor signaling, and identify allopregnanolone as a candidate therapeutic lead.",
author = "Zhengyu Cao and Susan Hulsizer and Flora Tassone and Tang, {Hiu Tung} and Hagerman, {Randi J} and Rogawski, {Michael A} and Hagerman, {Paul J} and Pessah, {Isaac N}",
year = "2012",
month = "7",
doi = "10.1093/hmg/dds118",
language = "English (US)",
volume = "21",
pages = "2923--2935",
journal = "Human Molecular Genetics",
issn = "0964-6906",
publisher = "Oxford University Press",
number = "13",

}

TY - JOUR

T1 - Clustered burst firing in FMR1 premutation hippocampal neurons

T2 - Amelioration with allopregnanolone

AU - Cao, Zhengyu

AU - Hulsizer, Susan

AU - Tassone, Flora

AU - Tang, Hiu Tung

AU - Hagerman, Randi J

AU - Rogawski, Michael A

AU - Hagerman, Paul J

AU - Pessah, Isaac N

PY - 2012/7

Y1 - 2012/7

N2 - Premutation CGG repeat expansions (55-200 CGG repeats; preCGG) within the fragile X mental retardation 1 (FMR1) gene cause fragile X-associated tremor/ataxia syndrome (FXTAS). Defects in neuronal morphology and migration have been described in a preCGG mouse model. Mouse preCGG hippocampal neurons (170 CGG repeats) grown in vitro develop abnormal networks of clustered burst (CB) firing, as assessed by multielectrode array recordings and clustered patterns of spontaneous Ca2+ oscillations, neither typical of wild-type (WT) neurons. PreCGG neurons have reduced expression of vesicular GABA and glutamate (Glu) transporters (VGAT and VGLUT1, respectively), and preCGG hippocampal astrocytes display a rightward shift on Glu uptake kinetics, compared with WT. These alterations in preCGG astrocytes and neurons are associated with 4- to 8-fold elevated Fmr1 mRNA and occur despite consistent expression of fragile X mental retardation protein levels at ~50% of WT levels. Abnormal patterns of activity observed in preCGG neurons are pharmacologically mimicked in WT neurons by addition of Glu or the mGluR1/5 agonist, dihydroxyphenylglycine, to the medium, or by inhibition of astrocytic Glu uptake with dl-threo-β-benzyloxyaspartic acid, but not by the ionotropic Glu receptor agonists, α-2-amino-3-(5-methyl-3-oxo-1,2-oxazol-4-yl) propanoic acid or N-methyl-d-aspartic acid. The mGluR1 (7-(hydroxyimino)cyclopropa [b]chromen-1a-carboxylate ethyl ester) or mGluR5 (2-methyl-6-(phenylethynyl)pyridine hydrochloride) antagonists reversed CB firing. Importantly, the acute addition of the neurosteroid allopregnanolone mitigated functional impairments observed in preCGG neurons in a reversible manner. These results demonstrate abnormal mGluR1/5 signaling in preCGG neurons, which is ameliorated by mGluR1/5 antagonists or augmentation of GABAA receptor signaling, and identify allopregnanolone as a candidate therapeutic lead.

AB - Premutation CGG repeat expansions (55-200 CGG repeats; preCGG) within the fragile X mental retardation 1 (FMR1) gene cause fragile X-associated tremor/ataxia syndrome (FXTAS). Defects in neuronal morphology and migration have been described in a preCGG mouse model. Mouse preCGG hippocampal neurons (170 CGG repeats) grown in vitro develop abnormal networks of clustered burst (CB) firing, as assessed by multielectrode array recordings and clustered patterns of spontaneous Ca2+ oscillations, neither typical of wild-type (WT) neurons. PreCGG neurons have reduced expression of vesicular GABA and glutamate (Glu) transporters (VGAT and VGLUT1, respectively), and preCGG hippocampal astrocytes display a rightward shift on Glu uptake kinetics, compared with WT. These alterations in preCGG astrocytes and neurons are associated with 4- to 8-fold elevated Fmr1 mRNA and occur despite consistent expression of fragile X mental retardation protein levels at ~50% of WT levels. Abnormal patterns of activity observed in preCGG neurons are pharmacologically mimicked in WT neurons by addition of Glu or the mGluR1/5 agonist, dihydroxyphenylglycine, to the medium, or by inhibition of astrocytic Glu uptake with dl-threo-β-benzyloxyaspartic acid, but not by the ionotropic Glu receptor agonists, α-2-amino-3-(5-methyl-3-oxo-1,2-oxazol-4-yl) propanoic acid or N-methyl-d-aspartic acid. The mGluR1 (7-(hydroxyimino)cyclopropa [b]chromen-1a-carboxylate ethyl ester) or mGluR5 (2-methyl-6-(phenylethynyl)pyridine hydrochloride) antagonists reversed CB firing. Importantly, the acute addition of the neurosteroid allopregnanolone mitigated functional impairments observed in preCGG neurons in a reversible manner. These results demonstrate abnormal mGluR1/5 signaling in preCGG neurons, which is ameliorated by mGluR1/5 antagonists or augmentation of GABAA receptor signaling, and identify allopregnanolone as a candidate therapeutic lead.

UR - http://www.scopus.com/inward/record.url?scp=84863511377&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=84863511377&partnerID=8YFLogxK

U2 - 10.1093/hmg/dds118

DO - 10.1093/hmg/dds118

M3 - Article

C2 - 22466801

AN - SCOPUS:84863511377

VL - 21

SP - 2923

EP - 2935

JO - Human Molecular Genetics

JF - Human Molecular Genetics

SN - 0964-6906

IS - 13

M1 - dds118

ER -