TY - JOUR
T1 - Close but no cigar
T2 - Spatial precision deficits following medial temporal lobe lesions provide novel insight into theoretical models of navigation and memory
AU - Kolarik, Branden S.
AU - Baer, Trevor
AU - Shahlaie, Kiarash
AU - Yonelinas, Andrew P.
AU - Ekstrom, Arne D.
PY - 2018/1/1
Y1 - 2018/1/1
N2 - Increasing evidence suggests that the human hippocampus contributes to a range of different behaviors, including episodic memory, language, short-term memory, and navigation. A novel theoretical framework, the Precision and Binding Model, accounts for these phenomenon by describing a role for the hippocampus in high-resolution, complex binding. Other theories like Cognitive Map Theory, in contrast, predict a specific role for the hippocampus in allocentric navigation, while Declarative Memory Theory predicts a specific role in delay-dependent conscious memory. Navigation provides a unique venue for testing these predictions, with past results from research with humans providing inconsistent findings regarding the role of the human hippocampus in spatial navigation. Here, we tested five patients with lesions primarily restricted to the hippocampus and those extending out into the surrounding medial temporal lobe cortex on a virtual water maze task. Consistent with the Precision and Binding Model, we found partially intact allocentric memory in all patients, with impairments in the spatial precision of their searches for a hidden target. We found similar impairments at both immediate and delayed testing. Our findings are consistent with the Precision and Binding Model of hippocampal function, arguing for its role across domains in high-resolution, complex binding. Significance Statement: Remembering goal locations in one's environment is a critical skill for survival. How this information is represented in the brain is still not fully understood, but is believed to rely in some capacity on structures in the medial temporal lobe. Contradictory findings from studies of both humans and animals have been difficult to reconcile with regard to the role of the MTL, specifically the hippocampus. By assessing impairments observed during navigation to a goal in patients with medial temporal lobe damage we can better understand the role these structures play in such behavior. Utilizing virtual reality and novel analysis techniques, we have more precisely assessed the impact that medial temporal lobe damage has on spatial memory and navigation.
AB - Increasing evidence suggests that the human hippocampus contributes to a range of different behaviors, including episodic memory, language, short-term memory, and navigation. A novel theoretical framework, the Precision and Binding Model, accounts for these phenomenon by describing a role for the hippocampus in high-resolution, complex binding. Other theories like Cognitive Map Theory, in contrast, predict a specific role for the hippocampus in allocentric navigation, while Declarative Memory Theory predicts a specific role in delay-dependent conscious memory. Navigation provides a unique venue for testing these predictions, with past results from research with humans providing inconsistent findings regarding the role of the human hippocampus in spatial navigation. Here, we tested five patients with lesions primarily restricted to the hippocampus and those extending out into the surrounding medial temporal lobe cortex on a virtual water maze task. Consistent with the Precision and Binding Model, we found partially intact allocentric memory in all patients, with impairments in the spatial precision of their searches for a hidden target. We found similar impairments at both immediate and delayed testing. Our findings are consistent with the Precision and Binding Model of hippocampal function, arguing for its role across domains in high-resolution, complex binding. Significance Statement: Remembering goal locations in one's environment is a critical skill for survival. How this information is represented in the brain is still not fully understood, but is believed to rely in some capacity on structures in the medial temporal lobe. Contradictory findings from studies of both humans and animals have been difficult to reconcile with regard to the role of the MTL, specifically the hippocampus. By assessing impairments observed during navigation to a goal in patients with medial temporal lobe damage we can better understand the role these structures play in such behavior. Utilizing virtual reality and novel analysis techniques, we have more precisely assessed the impact that medial temporal lobe damage has on spatial memory and navigation.
KW - Hippocampus
KW - Lesions
KW - Medial Temporal Lobe
KW - Spatial Navigation
UR - http://www.scopus.com/inward/record.url?scp=85038581330&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85038581330&partnerID=8YFLogxK
U2 - 10.1002/hipo.22801
DO - 10.1002/hipo.22801
M3 - Article
C2 - 28888032
AN - SCOPUS:85038581330
VL - 28
SP - 31
EP - 41
JO - Hippocampus
JF - Hippocampus
SN - 1050-9631
IS - 1
ER -