Circulating concentrations of monocyte chemoattractant protein-1, plasminogen activator inhibitor-1, and soluble leukocyte adhesion molecule-1 in overweight/obese men and women consuming fructose- or glucose-sweetened beverages for 10 weeks

Chad L. Cox, Kimber Stanhope, Jean Marc Schwarz, James L. Graham, Bonnie Hatcher, Steven C. Griffen, Andrew A. Bremer, Lars Berglund, John P McGahan, Nancy L. Keim, Peter J Havel

Research output: Contribution to journalArticle

37 Citations (Scopus)

Abstract

Context: Results from animal studies suggest that consumption of large amounts of fructose can promote inflammation and impair fibrinolysis. Data describing the effects of fructose consumption on circulating levels of proinflammatory and prothrombotic markers in humans are unavailable. Objective: Our objective was to determine the effects of 10 wk of dietary fructose or glucose consumption on plasma concentrations of monocyte chemoattractant protein-1 (MCP-1), plasminogen activator inhibitor-1 (PAI-1), E-selectin, intercellular adhesion molecule-1, C-reactive protein, and IL-6. Design and Setting: This was a parallel-arm study with two inpatient phases (2 wk baseline, final 2 wk intervention), conducted in a clinical research facility, and an outpatient phase (8 wk) during which subjects resided at home. Participants: Participants were older (40-72 yr), overweight/obese (body mass index = 25-35 kg/m 2) men (n = 16) and women (n = 15). Interventions: Participants consumed glucose- or fructose-sweetened beverages providing 25% of energy requirements for 10 wk. Blood samples were collected at baseline and during the 10th week of intervention. Main Outcome Measures: Fasting concentrations of MCP-1 (P = 0.009), PAI-1 (P = 0.002), and E-selectin (P = 0.048) as well as postprandial concentrations of PAI-1 (P < 0.0001) increased in subjects consuming fructose but not in those consuming glucose. Fasting levels of C-reactive protein, IL-6, and intercellular adhesion molecule-1 were not changed in either group. Conclusions: Consumption of fructose for 10 wk leads to increases of MCP-1, PAI-1, and E-selectin. These findings suggest the possibility that fructose may contribute to the development of the metabolic syndrome via effects on proinflammatory and prothrombotic mediators.

Original languageEnglish (US)
JournalJournal of Clinical Endocrinology and Metabolism
Volume96
Issue number12
DOIs
StatePublished - Dec 2011

Fingerprint

Beverages
Chemokine CCL2
Plasminogen Activator Inhibitor 1
Cell Adhesion Molecules
Fructose
Glucose
E-Selectin
Intercellular Adhesion Molecule-1
C-Reactive Protein
Interleukin-6
Fasting
P-Selectin
Fibrinolysis
Inpatients
Animals
Body Mass Index
Blood
Outpatients
Outcome Assessment (Health Care)
Inflammation

ASJC Scopus subject areas

  • Biochemistry
  • Clinical Biochemistry
  • Endocrinology
  • Biochemistry, medical
  • Endocrinology, Diabetes and Metabolism

Cite this

Circulating concentrations of monocyte chemoattractant protein-1, plasminogen activator inhibitor-1, and soluble leukocyte adhesion molecule-1 in overweight/obese men and women consuming fructose- or glucose-sweetened beverages for 10 weeks. / Cox, Chad L.; Stanhope, Kimber; Schwarz, Jean Marc; Graham, James L.; Hatcher, Bonnie; Griffen, Steven C.; Bremer, Andrew A.; Berglund, Lars; McGahan, John P; Keim, Nancy L.; Havel, Peter J.

In: Journal of Clinical Endocrinology and Metabolism, Vol. 96, No. 12, 12.2011.

Research output: Contribution to journalArticle

@article{f14f6b357de04fd7b792588cd0818bb0,
title = "Circulating concentrations of monocyte chemoattractant protein-1, plasminogen activator inhibitor-1, and soluble leukocyte adhesion molecule-1 in overweight/obese men and women consuming fructose- or glucose-sweetened beverages for 10 weeks",
abstract = "Context: Results from animal studies suggest that consumption of large amounts of fructose can promote inflammation and impair fibrinolysis. Data describing the effects of fructose consumption on circulating levels of proinflammatory and prothrombotic markers in humans are unavailable. Objective: Our objective was to determine the effects of 10 wk of dietary fructose or glucose consumption on plasma concentrations of monocyte chemoattractant protein-1 (MCP-1), plasminogen activator inhibitor-1 (PAI-1), E-selectin, intercellular adhesion molecule-1, C-reactive protein, and IL-6. Design and Setting: This was a parallel-arm study with two inpatient phases (2 wk baseline, final 2 wk intervention), conducted in a clinical research facility, and an outpatient phase (8 wk) during which subjects resided at home. Participants: Participants were older (40-72 yr), overweight/obese (body mass index = 25-35 kg/m 2) men (n = 16) and women (n = 15). Interventions: Participants consumed glucose- or fructose-sweetened beverages providing 25{\%} of energy requirements for 10 wk. Blood samples were collected at baseline and during the 10th week of intervention. Main Outcome Measures: Fasting concentrations of MCP-1 (P = 0.009), PAI-1 (P = 0.002), and E-selectin (P = 0.048) as well as postprandial concentrations of PAI-1 (P < 0.0001) increased in subjects consuming fructose but not in those consuming glucose. Fasting levels of C-reactive protein, IL-6, and intercellular adhesion molecule-1 were not changed in either group. Conclusions: Consumption of fructose for 10 wk leads to increases of MCP-1, PAI-1, and E-selectin. These findings suggest the possibility that fructose may contribute to the development of the metabolic syndrome via effects on proinflammatory and prothrombotic mediators.",
author = "Cox, {Chad L.} and Kimber Stanhope and Schwarz, {Jean Marc} and Graham, {James L.} and Bonnie Hatcher and Griffen, {Steven C.} and Bremer, {Andrew A.} and Lars Berglund and McGahan, {John P} and Keim, {Nancy L.} and Havel, {Peter J}",
year = "2011",
month = "12",
doi = "10.1210/jc.2011-1050",
language = "English (US)",
volume = "96",
journal = "Journal of Clinical Endocrinology and Metabolism",
issn = "0021-972X",
publisher = "The Endocrine Society",
number = "12",

}

TY - JOUR

T1 - Circulating concentrations of monocyte chemoattractant protein-1, plasminogen activator inhibitor-1, and soluble leukocyte adhesion molecule-1 in overweight/obese men and women consuming fructose- or glucose-sweetened beverages for 10 weeks

AU - Cox, Chad L.

AU - Stanhope, Kimber

AU - Schwarz, Jean Marc

AU - Graham, James L.

AU - Hatcher, Bonnie

AU - Griffen, Steven C.

AU - Bremer, Andrew A.

AU - Berglund, Lars

AU - McGahan, John P

AU - Keim, Nancy L.

AU - Havel, Peter J

PY - 2011/12

Y1 - 2011/12

N2 - Context: Results from animal studies suggest that consumption of large amounts of fructose can promote inflammation and impair fibrinolysis. Data describing the effects of fructose consumption on circulating levels of proinflammatory and prothrombotic markers in humans are unavailable. Objective: Our objective was to determine the effects of 10 wk of dietary fructose or glucose consumption on plasma concentrations of monocyte chemoattractant protein-1 (MCP-1), plasminogen activator inhibitor-1 (PAI-1), E-selectin, intercellular adhesion molecule-1, C-reactive protein, and IL-6. Design and Setting: This was a parallel-arm study with two inpatient phases (2 wk baseline, final 2 wk intervention), conducted in a clinical research facility, and an outpatient phase (8 wk) during which subjects resided at home. Participants: Participants were older (40-72 yr), overweight/obese (body mass index = 25-35 kg/m 2) men (n = 16) and women (n = 15). Interventions: Participants consumed glucose- or fructose-sweetened beverages providing 25% of energy requirements for 10 wk. Blood samples were collected at baseline and during the 10th week of intervention. Main Outcome Measures: Fasting concentrations of MCP-1 (P = 0.009), PAI-1 (P = 0.002), and E-selectin (P = 0.048) as well as postprandial concentrations of PAI-1 (P < 0.0001) increased in subjects consuming fructose but not in those consuming glucose. Fasting levels of C-reactive protein, IL-6, and intercellular adhesion molecule-1 were not changed in either group. Conclusions: Consumption of fructose for 10 wk leads to increases of MCP-1, PAI-1, and E-selectin. These findings suggest the possibility that fructose may contribute to the development of the metabolic syndrome via effects on proinflammatory and prothrombotic mediators.

AB - Context: Results from animal studies suggest that consumption of large amounts of fructose can promote inflammation and impair fibrinolysis. Data describing the effects of fructose consumption on circulating levels of proinflammatory and prothrombotic markers in humans are unavailable. Objective: Our objective was to determine the effects of 10 wk of dietary fructose or glucose consumption on plasma concentrations of monocyte chemoattractant protein-1 (MCP-1), plasminogen activator inhibitor-1 (PAI-1), E-selectin, intercellular adhesion molecule-1, C-reactive protein, and IL-6. Design and Setting: This was a parallel-arm study with two inpatient phases (2 wk baseline, final 2 wk intervention), conducted in a clinical research facility, and an outpatient phase (8 wk) during which subjects resided at home. Participants: Participants were older (40-72 yr), overweight/obese (body mass index = 25-35 kg/m 2) men (n = 16) and women (n = 15). Interventions: Participants consumed glucose- or fructose-sweetened beverages providing 25% of energy requirements for 10 wk. Blood samples were collected at baseline and during the 10th week of intervention. Main Outcome Measures: Fasting concentrations of MCP-1 (P = 0.009), PAI-1 (P = 0.002), and E-selectin (P = 0.048) as well as postprandial concentrations of PAI-1 (P < 0.0001) increased in subjects consuming fructose but not in those consuming glucose. Fasting levels of C-reactive protein, IL-6, and intercellular adhesion molecule-1 were not changed in either group. Conclusions: Consumption of fructose for 10 wk leads to increases of MCP-1, PAI-1, and E-selectin. These findings suggest the possibility that fructose may contribute to the development of the metabolic syndrome via effects on proinflammatory and prothrombotic mediators.

UR - http://www.scopus.com/inward/record.url?scp=83155168431&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=83155168431&partnerID=8YFLogxK

U2 - 10.1210/jc.2011-1050

DO - 10.1210/jc.2011-1050

M3 - Article

VL - 96

JO - Journal of Clinical Endocrinology and Metabolism

JF - Journal of Clinical Endocrinology and Metabolism

SN - 0021-972X

IS - 12

ER -