Chronic aeroallergen during infancy enhances eotaxin-3 expression in airway epithelium and nerves

Debbie L. Chou, Bruce L. Daugherty, Erin K. McKenna, Willy M. Hsu, Nancy K. Tyler, Charles G. Plopper, Dallas Melvin Hyde, Edward S. Schelegle, Laurel J. Gershwin, Lisa A. Miller

Research output: Contribution to journalArticlepeer-review

18 Scopus citations


We have documented that exposure of rhesus monkeys to house dust mite aeroallergen during postnatal development resulted in significant recruitment of eosinophils into the airway mucosa (Clin Exp Allergy 33:1686-1694, 2003). Because eosinophils were not uniformly distributed throughout the five conducting airway generations examined, we speculated that trafficking within anatomic microenvironments of the lung is mediated by differential chemokine expression. To address this question, we used quantitative real-time RT-PCR to evaluate the related eosinophilic chemokines, eotaxin (CCL11), eotaxin-2 (CCL24), and eotaxin-3 (CCL26) within isolated airways of infant monkey lung. Overall, chemokine mRNA expression levels in house dust mite-exposed airways were as follows: eotaxin-3 > eotaxin > eotaxin-2. Immunofluorescence staining for eotaxin-3 and CC chemokine receptor 3 (CCR3) showed positive cells within epithelium and peripherally located nerve fiber bundles of the airway wall. Epithelial volume of eotaxin-3 within the trachea correlated with epithelial volume of major basic protein. CCR3+ and MHC Class II+ dendritic cells, but not eosinophils or mast cells, co-localized within eotaxin-3+ nerve fiber bundles. We conclude that localized expression of eotaxin-3 plays an important role in the recruitment of diverse CCR3+ cell populations to different anatomic microenvironments within the infant airway in response to chronic allergen exposure.

Original languageEnglish (US)
Pages (from-to)1-8
Number of pages8
JournalAmerican Journal of Respiratory Cell and Molecular Biology
Issue number1
StatePublished - Jul 2005


  • Chemokine
  • Development
  • Eosinophil
  • Lung

ASJC Scopus subject areas

  • Cell Biology
  • Pulmonary and Respiratory Medicine
  • Molecular Biology


Dive into the research topics of 'Chronic aeroallergen during infancy enhances eotaxin-3 expression in airway epithelium and nerves'. Together they form a unique fingerprint.

Cite this