Chloride-cotransport blockade desynchronizes neuronal discharge in the 'epileptic' hippocampal slice

Daryl W. Hochman, Philip A Schwartzkroin

Research output: Contribution to journalArticlepeer-review

43 Scopus citations


Antagonism of the chloride-cotransport system in hippocampal slices has been shown to block spontaneous epileptiform (i.e., hypersynchronized) discharges without diminishing excitatory synaptic transmission. Here we test the hypotheses that chloride-cotransport blockade, with furosemide or low- chloride (low-[Cl-](o)) medium, desynchronizes the firing activity of neuronal populations and that this desynchronization is mediated through nonsynaptic mechanisms. Spontaneous epileptiform discharges were recorded from the CA1 and CA3 cell body layers of hippocampal slices. Treatment with low-[Cl-](o) medium led to cessation of spontaneous synchronized bursting in CA1 ≥5-10 min before its disappearance from CA3. During the time that CA3 continued to burst spontaneously but CA1 was silent, electrical stimulation of the Schaffer collaterals showed that hyperexcited CA1 synaptic responses were maintained. Paired intracellular recordings from CA1 pyramidal cells showed that during low-[Cl-](o) treatment, the timing of action potential discharges became desynchronized; desynchronization was identified with phase lags in firing times of action potentials between pairs of neurons as well as a with a broadening and diminution of the CA1 field amplitude. Continued exposure to low-[Cl-](o) medium increased the degree of the firing-time phase shifts between pairs of CA1 pyramidal cells until the epileptiform CA1 field potential was abolished completely. Intracellular recordings during 4- aminopyridine (4-AP) treatment showed that prolonged low-[Cl-](o) exposure did not diminish the frequency or amplitude of spontaneous postsynaptic potentials. CA3 antidromic responses to Schaffer collateral stimulation were not significantly affected by prolonged low-[Cl-](o) exposure. In contrast to CA1, paired intracellular recordings from CA3 pyramidal cells showed that chloride-cotransport blockade did not cause a significant desynchronization of action potential firing times in the CA3 subregion at the time that CA1 synchronous discharge was blocked but did reduce the number of action potentials associated with CA3 burst discharges. These data support our hypothesis that the anti-epileptic effects of chloride-cotransport antagonism in CA1 are mediated through the desynchronization of population activity. We hypothesize that interference with Na+,K+,2Cl- cotransport results in an increase in extracellular potassium ([K+](o)) that reduces the number of action potentials that are able to invade axonal arborizations and varicosities in all hippocampal subregions. This reduced efficacy of presynaptic action potential propagation ultimately leads to a reduction of synaptic drive and a desynchronization of the firing of CA1 pyramidal cells.

Original languageEnglish (US)
Pages (from-to)406-417
Number of pages12
JournalJournal of Neurophysiology
Issue number1
StatePublished - 2000
Externally publishedYes

ASJC Scopus subject areas

  • Physiology
  • Neuroscience(all)


Dive into the research topics of 'Chloride-cotransport blockade desynchronizes neuronal discharge in the 'epileptic' hippocampal slice'. Together they form a unique fingerprint.

Cite this