Abstract
Parametric characterization of nitric oxide (NO) gas exchange using a two-compartment model of the lungs is a potentially promising, non-invasive technique to characterize inflammatory lung diseases. Currently, this techniques is limited to single breath maneuvers, including pre-expiratory breath-hold, which is cumbersome for children and individuals with compromised lung function. The current study extends the two-compartment model to parametric characterization of NO gas exchange from tidal breathing data. We assess the potential to estimate up to six flow-independent parameters, and study alternate breathing patterns by varying breathing frequency and inspiratory/expiratory flow rate ratio at constant alveolar ventilation rate. We identify three, easily characterized flow-independent parameters, which include maximum airway flux, steady state alveolar concentration, and airway volume (uncertainty < 10%). Rapid inhalation followed by slow (long duration) exhalation facilitates estimates of all flow-independent parameters. Our results demonstrate the potential of parametric analysis of tidal breathing data to characterize NO pulmonary exchange.
Original language | English (US) |
---|---|
Pages (from-to) | 1489-1490 |
Number of pages | 2 |
Journal | Annual International Conference of the IEEE Engineering in Medicine and Biology - Proceedings |
Volume | 2 |
State | Published - Dec 1 2002 |
Event | Proceedings of the 2002 IEEE Engineering in Medicine and Biology 24th Annual Conference and the 2002 Fall Meeting of the Biomedical Engineering Society (BMES / EMBS) - Houston, TX, United States Duration: Oct 23 2002 → Oct 26 2002 |
Keywords
- Airways
- Diffusing capacity
- NO
- Parameter estimation
- Tidal breathing
ASJC Scopus subject areas
- Signal Processing
- Biomedical Engineering
- Computer Vision and Pattern Recognition
- Health Informatics