TY - JOUR
T1 - Characterization of functional domains necessary for mutant p53 gain of function
AU - Yan, Wensheng
AU - Chen, Xinbin
PY - 2010/5/7
Y1 - 2010/5/7
N2 - Tumor cells, including SW480 carcinoma cells that carry a mutant p53, are addicted to the mutant for their survival and resistance to growth suppression by chemotherapeutic agents. Here, we investigated whether various classes of p53 mutants share a common property and functional domains necessary for mutant p53 gain of function. To test this, we generated SW480 cell lines in which endogenous mutant R273H/P309S can be inducibly or stably knocked down, whereas a small interfering RNA-resistant mutant p53 along with a mutated functional domain can be inducibly or stably expressed. We found that both contact-site (R248W and R273H) and conformation (G245S and R249S) mutants are able to maintain the transformed phenotypes of SW480 cells conferred by endogenous mutant p53. We also found that activation domains 1-2 and the proline-rich domain are required for mutant p53 gain of function. Interestingly, we showed that the C-terminal basic domain, which is required for wild-type p53 activity, is an inhibitory domain for mutant p53. Furthermore, we showed that deletion of the basic domain enhances, whereas a mutation in activation domains 1-2 and deletion of the proline-rich domain abolish mutant p53 to regulate Gro1 and Id2, both of which are regulated by and mediate endogenous mutant p53 gain of function. These results indicate that both conformation and contact-site mutants share a property for cell transformation, and the domains critical for wild-type p53 tumor suppression are also required for mutant p53 tumor promotion. Thus, the inhibitory basic domain and the common property for p53 mutants can be explored for targeting tumors with mutant p53.
AB - Tumor cells, including SW480 carcinoma cells that carry a mutant p53, are addicted to the mutant for their survival and resistance to growth suppression by chemotherapeutic agents. Here, we investigated whether various classes of p53 mutants share a common property and functional domains necessary for mutant p53 gain of function. To test this, we generated SW480 cell lines in which endogenous mutant R273H/P309S can be inducibly or stably knocked down, whereas a small interfering RNA-resistant mutant p53 along with a mutated functional domain can be inducibly or stably expressed. We found that both contact-site (R248W and R273H) and conformation (G245S and R249S) mutants are able to maintain the transformed phenotypes of SW480 cells conferred by endogenous mutant p53. We also found that activation domains 1-2 and the proline-rich domain are required for mutant p53 gain of function. Interestingly, we showed that the C-terminal basic domain, which is required for wild-type p53 activity, is an inhibitory domain for mutant p53. Furthermore, we showed that deletion of the basic domain enhances, whereas a mutation in activation domains 1-2 and deletion of the proline-rich domain abolish mutant p53 to regulate Gro1 and Id2, both of which are regulated by and mediate endogenous mutant p53 gain of function. These results indicate that both conformation and contact-site mutants share a property for cell transformation, and the domains critical for wild-type p53 tumor suppression are also required for mutant p53 tumor promotion. Thus, the inhibitory basic domain and the common property for p53 mutants can be explored for targeting tumors with mutant p53.
UR - http://www.scopus.com/inward/record.url?scp=77952005099&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=77952005099&partnerID=8YFLogxK
U2 - 10.1074/jbc.M109.097253
DO - 10.1074/jbc.M109.097253
M3 - Article
C2 - 20212049
AN - SCOPUS:77952005099
VL - 285
SP - 14229
EP - 14238
JO - Journal of Biological Chemistry
JF - Journal of Biological Chemistry
SN - 0021-9258
IS - 19
ER -