Abstract
Exploitation of the intracellular virus machinery within infected cells to drive an anti-viral gene therapy vector may prove to be a feasible alternative to reducing viral loads or overall virus infectivity while propagating the spread of a therapeutic vector. Using a simian immunodeficiency virus (SIV)-based system, it was shown that the pre-existing retroviral biological machinery within SIV-infected cells can drive the expression of an anti-SIV pol ribozyme and mobilize the vector to transduce neighbouring cells. The anti-SIV pol ribozyme vector was derived from the SIV backbone and contained the 5′- and 3′LTR including transactivation-response, Ψ and Rev-responsive elements, thus requiring Tat and Rev and therefore limiting expression to SIV-infected cells. The data presented here show an early reduction in SIV p27 levels in the presence of the anti-SIV pol ribozyme, as well as successful mobilization (vector RNA constituted ∼17% of the total virus pool) and spread of the vector containing this ribozyme. These findings provide direct evidence that mobilization of an anti-retroviral SIV gene therapy vector is feasible in the SIV/macaque model.
Original language | English (US) |
---|---|
Pages (from-to) | 1489-1496 |
Number of pages | 8 |
Journal | Journal of General Virology |
Volume | 85 |
Issue number | 6 |
DOIs | |
State | Published - Jun 2004 |
ASJC Scopus subject areas
- Immunology
- Virology