Changes in the distribution of intermediate-filament types in Japanese quail embryos during morphogenesis.

C. A. Erickson, Richard P Tucker, B. F. Edwards

Research output: Contribution to journalArticle

33 Citations (Scopus)

Abstract

We examined the distribution of intermediate filaments in early quail embryos in order to determine whether these cytoskeletal proteins play a role in the epithelial-mesenchymal transitions that commonly occur during embryogenesis, e.g., the separation of neural-crest cells from the neural epithelium. The distribution of cytokeratins, vimentin, and desmin was examined in frozen sections of quail embryos at stages during which dramatic reorganizations of tissues take place. All embryonic tissues were found to contain either vimentin or cytokeratins, but the distribution of these cytoskeletal proteins was characteristic neither of the cellular organization (e.g., epithelium vs. mesenchyme) nor of the germ-layer derivation of the tissues. Cytokeratin monoclonal antibodies stained most embryonic epithelia (defined here as being sheet-like tissue with an underlying basement membrane), including epidermis and extraembryonic membranes derived in part from the ectoderm, splanchnopleure and kidney tubules derived from mesoderm, and endoderm. Cytokeratin antibodies did not stain some epithelia, including the neural tube, neural plate, and dermatome/myotome. Whereas the cytokeratin antibodies exclusively stained epithelia, the vimentin antibodies labeled both epithelial (the neural tube, dermatome/myotome, and somatic and splanchnic mesoderm) and mesenchymal tissues (the sclerotome and neural-crest cells), regardless of their germ-layer derivation. In early embryos, antibodies against desmin only stained the myotome and, in 4-day embryos, the heart and mesenchyme around the pharynx. As the distribution of intermediate-filament types did not reflect tissue organization or germ-layer derivation, we propose that the distribution of intermediate filaments in early avian embryos reflects the motile capacity of an embryonic cell and/or the presence of specialized cell junctions, i.e., desmosomes.

Original languageEnglish (US)
Pages (from-to)88-97
Number of pages10
JournalDifferentiation
Volume34
Issue number2
StatePublished - 1987

Fingerprint

Coturnix
Intermediate Filaments
Morphogenesis
Keratins
Embryonic Structures
Mesoderm
Epithelium
Germ Layers
Vimentin
Neural Tube
Quail
Cytoskeletal Proteins
Desmin
Antibodies
Neural Crest
Kidney Tubules
Neural Plate
Extraembryonic Membranes
Desmosomes
Endoderm

ASJC Scopus subject areas

  • Cell Biology
  • Developmental Biology
  • Pathology and Forensic Medicine

Cite this

Changes in the distribution of intermediate-filament types in Japanese quail embryos during morphogenesis. / Erickson, C. A.; Tucker, Richard P; Edwards, B. F.

In: Differentiation, Vol. 34, No. 2, 1987, p. 88-97.

Research output: Contribution to journalArticle

@article{c0ef02acda94412794401cc6d77d84cb,
title = "Changes in the distribution of intermediate-filament types in Japanese quail embryos during morphogenesis.",
abstract = "We examined the distribution of intermediate filaments in early quail embryos in order to determine whether these cytoskeletal proteins play a role in the epithelial-mesenchymal transitions that commonly occur during embryogenesis, e.g., the separation of neural-crest cells from the neural epithelium. The distribution of cytokeratins, vimentin, and desmin was examined in frozen sections of quail embryos at stages during which dramatic reorganizations of tissues take place. All embryonic tissues were found to contain either vimentin or cytokeratins, but the distribution of these cytoskeletal proteins was characteristic neither of the cellular organization (e.g., epithelium vs. mesenchyme) nor of the germ-layer derivation of the tissues. Cytokeratin monoclonal antibodies stained most embryonic epithelia (defined here as being sheet-like tissue with an underlying basement membrane), including epidermis and extraembryonic membranes derived in part from the ectoderm, splanchnopleure and kidney tubules derived from mesoderm, and endoderm. Cytokeratin antibodies did not stain some epithelia, including the neural tube, neural plate, and dermatome/myotome. Whereas the cytokeratin antibodies exclusively stained epithelia, the vimentin antibodies labeled both epithelial (the neural tube, dermatome/myotome, and somatic and splanchnic mesoderm) and mesenchymal tissues (the sclerotome and neural-crest cells), regardless of their germ-layer derivation. In early embryos, antibodies against desmin only stained the myotome and, in 4-day embryos, the heart and mesenchyme around the pharynx. As the distribution of intermediate-filament types did not reflect tissue organization or germ-layer derivation, we propose that the distribution of intermediate filaments in early avian embryos reflects the motile capacity of an embryonic cell and/or the presence of specialized cell junctions, i.e., desmosomes.",
author = "Erickson, {C. A.} and Tucker, {Richard P} and Edwards, {B. F.}",
year = "1987",
language = "English (US)",
volume = "34",
pages = "88--97",
journal = "Differentiation",
issn = "0301-4681",
publisher = "Elsevier BV",
number = "2",

}

TY - JOUR

T1 - Changes in the distribution of intermediate-filament types in Japanese quail embryos during morphogenesis.

AU - Erickson, C. A.

AU - Tucker, Richard P

AU - Edwards, B. F.

PY - 1987

Y1 - 1987

N2 - We examined the distribution of intermediate filaments in early quail embryos in order to determine whether these cytoskeletal proteins play a role in the epithelial-mesenchymal transitions that commonly occur during embryogenesis, e.g., the separation of neural-crest cells from the neural epithelium. The distribution of cytokeratins, vimentin, and desmin was examined in frozen sections of quail embryos at stages during which dramatic reorganizations of tissues take place. All embryonic tissues were found to contain either vimentin or cytokeratins, but the distribution of these cytoskeletal proteins was characteristic neither of the cellular organization (e.g., epithelium vs. mesenchyme) nor of the germ-layer derivation of the tissues. Cytokeratin monoclonal antibodies stained most embryonic epithelia (defined here as being sheet-like tissue with an underlying basement membrane), including epidermis and extraembryonic membranes derived in part from the ectoderm, splanchnopleure and kidney tubules derived from mesoderm, and endoderm. Cytokeratin antibodies did not stain some epithelia, including the neural tube, neural plate, and dermatome/myotome. Whereas the cytokeratin antibodies exclusively stained epithelia, the vimentin antibodies labeled both epithelial (the neural tube, dermatome/myotome, and somatic and splanchnic mesoderm) and mesenchymal tissues (the sclerotome and neural-crest cells), regardless of their germ-layer derivation. In early embryos, antibodies against desmin only stained the myotome and, in 4-day embryos, the heart and mesenchyme around the pharynx. As the distribution of intermediate-filament types did not reflect tissue organization or germ-layer derivation, we propose that the distribution of intermediate filaments in early avian embryos reflects the motile capacity of an embryonic cell and/or the presence of specialized cell junctions, i.e., desmosomes.

AB - We examined the distribution of intermediate filaments in early quail embryos in order to determine whether these cytoskeletal proteins play a role in the epithelial-mesenchymal transitions that commonly occur during embryogenesis, e.g., the separation of neural-crest cells from the neural epithelium. The distribution of cytokeratins, vimentin, and desmin was examined in frozen sections of quail embryos at stages during which dramatic reorganizations of tissues take place. All embryonic tissues were found to contain either vimentin or cytokeratins, but the distribution of these cytoskeletal proteins was characteristic neither of the cellular organization (e.g., epithelium vs. mesenchyme) nor of the germ-layer derivation of the tissues. Cytokeratin monoclonal antibodies stained most embryonic epithelia (defined here as being sheet-like tissue with an underlying basement membrane), including epidermis and extraembryonic membranes derived in part from the ectoderm, splanchnopleure and kidney tubules derived from mesoderm, and endoderm. Cytokeratin antibodies did not stain some epithelia, including the neural tube, neural plate, and dermatome/myotome. Whereas the cytokeratin antibodies exclusively stained epithelia, the vimentin antibodies labeled both epithelial (the neural tube, dermatome/myotome, and somatic and splanchnic mesoderm) and mesenchymal tissues (the sclerotome and neural-crest cells), regardless of their germ-layer derivation. In early embryos, antibodies against desmin only stained the myotome and, in 4-day embryos, the heart and mesenchyme around the pharynx. As the distribution of intermediate-filament types did not reflect tissue organization or germ-layer derivation, we propose that the distribution of intermediate filaments in early avian embryos reflects the motile capacity of an embryonic cell and/or the presence of specialized cell junctions, i.e., desmosomes.

UR - http://www.scopus.com/inward/record.url?scp=0023072524&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=0023072524&partnerID=8YFLogxK

M3 - Article

VL - 34

SP - 88

EP - 97

JO - Differentiation

JF - Differentiation

SN - 0301-4681

IS - 2

ER -