TY - JOUR
T1 - Cellular and molecular mechanisms underlying planar cell polarity pathway contributions to cancer malignancy
AU - VanderVorst, Kacey
AU - Hatakeyama, Jason
AU - Berg, Anastasia
AU - Lee, Hyun
AU - Carraway, Kermit L.
PY - 2017
Y1 - 2017
N2 - While the mutational activation of oncogenes drives tumor initiation and growth by promoting cellular transformation and proliferation, increasing evidence suggests that the subsequent re-engagement of largely dormant developmental pathways contributes to cellular phenotypes associated with the malignancy of solid tumors. Genetic studies from a variety of model organisms have defined many of the components that maintain epithelial planar cell polarity (PCP), or cellular polarity in the axis orthogonal to the apical-basal axis. These same components comprise an arm of non-canonical Wnt signaling that mediates cell motility events such as convergent extension movements essential to proper development. In this review, we summarize the increasing evidence that the Wnt/PCP signaling pathway plays active roles in promoting the proliferative and migratory properties of tumor cells, emphasizing the importance of subcellular localization of PCP components and protein-protein interactions in regulating cellullar properties associated with malignancy. Specifically, we discuss the increased expression of Wnt/PCP pathway components in cancer and the functional consequences of aberrant pathway activation, focusing on Wnt ligands, Frizzled (Fzd) receptors, the tetraspanin-like proteins Vangl1 and Vangl2, and the Prickle1 (Pk1) scaffold protein. In addition, we discuss negative regulation of the Wnt/PCP pathway, with particular emphasis on the Nrdp1 E3 ubiquitin ligase. We hypothesize that engagement of the Wnt/PCP pathway after tumor initiation drives malignancy by promoting cellular proliferation and invasiveness, and that the ability of Wnt/PCP signaling to supplant oncogene addiction may contribute to tumor resistance to oncogenic pathway-directed therapeutic agents.
AB - While the mutational activation of oncogenes drives tumor initiation and growth by promoting cellular transformation and proliferation, increasing evidence suggests that the subsequent re-engagement of largely dormant developmental pathways contributes to cellular phenotypes associated with the malignancy of solid tumors. Genetic studies from a variety of model organisms have defined many of the components that maintain epithelial planar cell polarity (PCP), or cellular polarity in the axis orthogonal to the apical-basal axis. These same components comprise an arm of non-canonical Wnt signaling that mediates cell motility events such as convergent extension movements essential to proper development. In this review, we summarize the increasing evidence that the Wnt/PCP signaling pathway plays active roles in promoting the proliferative and migratory properties of tumor cells, emphasizing the importance of subcellular localization of PCP components and protein-protein interactions in regulating cellullar properties associated with malignancy. Specifically, we discuss the increased expression of Wnt/PCP pathway components in cancer and the functional consequences of aberrant pathway activation, focusing on Wnt ligands, Frizzled (Fzd) receptors, the tetraspanin-like proteins Vangl1 and Vangl2, and the Prickle1 (Pk1) scaffold protein. In addition, we discuss negative regulation of the Wnt/PCP pathway, with particular emphasis on the Nrdp1 E3 ubiquitin ligase. We hypothesize that engagement of the Wnt/PCP pathway after tumor initiation drives malignancy by promoting cellular proliferation and invasiveness, and that the ability of Wnt/PCP signaling to supplant oncogene addiction may contribute to tumor resistance to oncogenic pathway-directed therapeutic agents.
KW - Cancer
KW - Metastasis
KW - Nrdp1
KW - Planar cell polarity
KW - Prickle
KW - Vangl
UR - http://www.scopus.com/inward/record.url?scp=85032794748&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85032794748&partnerID=8YFLogxK
U2 - 10.1016/j.semcdb.2017.09.026
DO - 10.1016/j.semcdb.2017.09.026
M3 - Article
C2 - 29107170
AN - SCOPUS:85032794748
JO - Seminars in Cell Biology
JF - Seminars in Cell Biology
SN - 1084-9521
ER -