TY - JOUR
T1 - Cell-lineage regulated myogenesis for dystrophin replacement
T2 - A novel therapeutic approach for treatment of muscular dystrophy
AU - Kimura, En
AU - Han, Jay J.
AU - Li, Sheng
AU - Fall, Brent
AU - Ra, Jennifer
AU - Haraguchi, Miki
AU - Tapscott, Stephen J.
AU - Chamberlain, Jeffrey S.
PY - 2008/8
Y1 - 2008/8
N2 - Duchenne muscular dystrophy (DMD) is characterized in skeletal muscle by cycles of myofiber necrosis and regeneration leading to loss of muscle fibers and replacement with fibrotic connective and adipose tissue. The ongoing activation and recruitment of muscle satellite cells for myofiber regeneration results in loss of regenerative capacity in part due to proliferative senescence. We explored a method whereby new myoblasts could be generated in dystrophic muscles by transplantation of primary fibroblasts engineered to express a micro-dystrophin/enhanced green fluorescent protein (μDys/eGFP) fusion gene together with a tamoxifen-inducible form of the myogenic regulator MyoD [MyoD-ER(T)]. Fibroblasts isolated from mdx4cv mice, a mouse model for DMD, were efficiently transduced with lentiviral vectors expressing μDys/ eGFP and MyoD-ER(T) and underwent myogenic conversion when exposed to tamoxifen. These cells could also be induced to differentiate into μDys/eGFP-expressing myocytes and myotubes. Transplantation of transduced mdx4cv fibroblasts into mdx4cv muscles enabled tamoxifen-dependent regeneration of myofibers that express μDys. This lineage control method therefore allows replenishment of myogenic stem cells using autologous fibroblasts carrying an exogenous dystrophin gene. This strategy carries several potential advantages over conventional myoblast transplantation methods including: (i) the relative simplicity of culturing fibroblasts compared with myoblasts, (ii) a readily available cell source and ease of expansion and (iii) the ability to induce MyoD gene expression in vivo via administration of a medication. Our study provides a proof of concept for a novel gene/stem cell therapy technique and opens another potential therapeutic approach for degenerative muscle disorders.
AB - Duchenne muscular dystrophy (DMD) is characterized in skeletal muscle by cycles of myofiber necrosis and regeneration leading to loss of muscle fibers and replacement with fibrotic connective and adipose tissue. The ongoing activation and recruitment of muscle satellite cells for myofiber regeneration results in loss of regenerative capacity in part due to proliferative senescence. We explored a method whereby new myoblasts could be generated in dystrophic muscles by transplantation of primary fibroblasts engineered to express a micro-dystrophin/enhanced green fluorescent protein (μDys/eGFP) fusion gene together with a tamoxifen-inducible form of the myogenic regulator MyoD [MyoD-ER(T)]. Fibroblasts isolated from mdx4cv mice, a mouse model for DMD, were efficiently transduced with lentiviral vectors expressing μDys/ eGFP and MyoD-ER(T) and underwent myogenic conversion when exposed to tamoxifen. These cells could also be induced to differentiate into μDys/eGFP-expressing myocytes and myotubes. Transplantation of transduced mdx4cv fibroblasts into mdx4cv muscles enabled tamoxifen-dependent regeneration of myofibers that express μDys. This lineage control method therefore allows replenishment of myogenic stem cells using autologous fibroblasts carrying an exogenous dystrophin gene. This strategy carries several potential advantages over conventional myoblast transplantation methods including: (i) the relative simplicity of culturing fibroblasts compared with myoblasts, (ii) a readily available cell source and ease of expansion and (iii) the ability to induce MyoD gene expression in vivo via administration of a medication. Our study provides a proof of concept for a novel gene/stem cell therapy technique and opens another potential therapeutic approach for degenerative muscle disorders.
UR - http://www.scopus.com/inward/record.url?scp=48249119884&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=48249119884&partnerID=8YFLogxK
U2 - 10.1093/hmg/ddn151
DO - 10.1093/hmg/ddn151
M3 - Article
C2 - 18511457
AN - SCOPUS:48249119884
VL - 17
SP - 2507
EP - 2517
JO - Human Molecular Genetics
JF - Human Molecular Genetics
SN - 0964-6906
IS - 16
ER -