Cardiovascular applications of nuclear magnetic resonance spectroscopy

Research output: Contribution to journalArticlepeer-review

3 Scopus citations


Nuclear magnetic resonance spectroscopy has great potential for defining noninvasively the metabolic status of the heart and skeletal muscle. This technique uses the spin properties of certain nuclei (such as phosphorus-31, hydrogen-1 and carbon-13) to measure high energy phosphates, intracellular pH, lactate and glycogen. Animal studies have formed the basis for human investigations and have demonstrated well-defined changes in high energy phosphates during myocardial ischemia and reperfusion, as well as in cardiomyopathies. Human studies have been limited by issues of sensitivity and localization, although techniques such as rotating frame, depth-resolved surface coil spectroscopy, image-selected in vivo spectroscopy and spectroscopic imaging have been used to acquire phosphorus-31 spectra from the human heart. The few human studies of patients with disease have demonstrated elevated inorganic phosphate peaks after myocardial infarction and abnormal phosphodiester peaks in patients with hypertrophic cardiomyopathy. Studies of patients with heart failure have shown that these patients acidify their peripheral muscles with exercise more easily than do control subjects. Clinical application of nuclear magnetic resonance spectroscopy will depend on technical advances and the demonstration of sensitivity of metabolic changes with disease.

Original languageEnglish (US)
JournalThe American journal of cardiology
Issue number9
StatePublished - Sep 5 1989

ASJC Scopus subject areas

  • Cardiology and Cardiovascular Medicine


Dive into the research topics of 'Cardiovascular applications of nuclear magnetic resonance spectroscopy'. Together they form a unique fingerprint.

Cite this