Blood flow in normal and dystrophic hamsters during nonshivering thermogenesis.

S. J. Wickler, Barbara A Horwitz

Research output: Contribution to journalArticle

7 Citations (Scopus)

Abstract

The genetically dystrophic line of hamsters (BIO 14.6) has a significantly reduced capacity for nonshivering thermogenesis (NST) when compared with age-matched normal animals. Of those tissues contributing most to NST, three are altered in the dystrophic hamster (brown fat and cardiac and skeletal muscle). This study has used regional blood flows in response to isoproterenol (a potent stimulator of NST) as a measure of the potential contribution of these tissues to NST. Both isoproterenol-induced O2 consumption and cardiac output were lower in the dystrophic hamsters (13.0 +/- 0.4 vs. 18.2 +/- 0.68 ml O2 X g-0.67 X h-1 and 2.10 +/- 0.10 vs 2.98 +/- 0.16 ml X g-0.67 X min-1, respectively). Tissue blood flow was measured to brown fat, heart, skeletal muscle, liver, kidneys, adrenals, skin, and white fat. Isoproterenol was found to increase blood flows to brown fat, skeletal muscle, and cardiac muscle in normal animals and to brown fat and skeletal muscle in dystrophic hamsters, suggesting that these tissues contribute to NST. However, when corrected for body weight differences, blood flows during isoproterenol infusion to skeletal muscle and to cardiac muscle did not significantly differ between normal and dystrophic animals (2.71 +/- 0.29 vs. 3.33 +/- 0.42 and 2.81 +/- 0.25 vs. 1.85 +/- 0.24 ml X 100 g body wt-1, respectively). In contrast, normal brown adipose tissue had significantly elevated blood flows (3.50 +/- 0.39 vs. 2.28 +/- 0.27 ml X 100 g body wt-1). Thus these observations provide in vivo support for the conclusion that the reduced NST capacity of dystrophic hamsters is due, in large part, to a reduced thermogenic contribution of brown fat.

Original languageEnglish (US)
JournalThe American journal of physiology
Volume247
Issue number1 Pt 2
StatePublished - Jul 1984

Fingerprint

Brown Adipose Tissue
Thermogenesis
Cricetinae
Skeletal Muscle
Isoproterenol
Myocardium
White Adipose Tissue
Regional Blood Flow
Cardiac Output
Body Weight
Kidney
Skin
Liver

ASJC Scopus subject areas

  • Medicine(all)

Cite this

Blood flow in normal and dystrophic hamsters during nonshivering thermogenesis. / Wickler, S. J.; Horwitz, Barbara A.

In: The American journal of physiology, Vol. 247, No. 1 Pt 2, 07.1984.

Research output: Contribution to journalArticle

@article{9b624d07e796420e87dfab8a34e28fcd,
title = "Blood flow in normal and dystrophic hamsters during nonshivering thermogenesis.",
abstract = "The genetically dystrophic line of hamsters (BIO 14.6) has a significantly reduced capacity for nonshivering thermogenesis (NST) when compared with age-matched normal animals. Of those tissues contributing most to NST, three are altered in the dystrophic hamster (brown fat and cardiac and skeletal muscle). This study has used regional blood flows in response to isoproterenol (a potent stimulator of NST) as a measure of the potential contribution of these tissues to NST. Both isoproterenol-induced O2 consumption and cardiac output were lower in the dystrophic hamsters (13.0 +/- 0.4 vs. 18.2 +/- 0.68 ml O2 X g-0.67 X h-1 and 2.10 +/- 0.10 vs 2.98 +/- 0.16 ml X g-0.67 X min-1, respectively). Tissue blood flow was measured to brown fat, heart, skeletal muscle, liver, kidneys, adrenals, skin, and white fat. Isoproterenol was found to increase blood flows to brown fat, skeletal muscle, and cardiac muscle in normal animals and to brown fat and skeletal muscle in dystrophic hamsters, suggesting that these tissues contribute to NST. However, when corrected for body weight differences, blood flows during isoproterenol infusion to skeletal muscle and to cardiac muscle did not significantly differ between normal and dystrophic animals (2.71 +/- 0.29 vs. 3.33 +/- 0.42 and 2.81 +/- 0.25 vs. 1.85 +/- 0.24 ml X 100 g body wt-1, respectively). In contrast, normal brown adipose tissue had significantly elevated blood flows (3.50 +/- 0.39 vs. 2.28 +/- 0.27 ml X 100 g body wt-1). Thus these observations provide in vivo support for the conclusion that the reduced NST capacity of dystrophic hamsters is due, in large part, to a reduced thermogenic contribution of brown fat.",
author = "Wickler, {S. J.} and Horwitz, {Barbara A}",
year = "1984",
month = "7",
language = "English (US)",
volume = "247",
journal = "American Journal of Physiology - Renal Fluid and Electrolyte Physiology",
issn = "1931-857X",
publisher = "American Physiological Society",
number = "1 Pt 2",

}

TY - JOUR

T1 - Blood flow in normal and dystrophic hamsters during nonshivering thermogenesis.

AU - Wickler, S. J.

AU - Horwitz, Barbara A

PY - 1984/7

Y1 - 1984/7

N2 - The genetically dystrophic line of hamsters (BIO 14.6) has a significantly reduced capacity for nonshivering thermogenesis (NST) when compared with age-matched normal animals. Of those tissues contributing most to NST, three are altered in the dystrophic hamster (brown fat and cardiac and skeletal muscle). This study has used regional blood flows in response to isoproterenol (a potent stimulator of NST) as a measure of the potential contribution of these tissues to NST. Both isoproterenol-induced O2 consumption and cardiac output were lower in the dystrophic hamsters (13.0 +/- 0.4 vs. 18.2 +/- 0.68 ml O2 X g-0.67 X h-1 and 2.10 +/- 0.10 vs 2.98 +/- 0.16 ml X g-0.67 X min-1, respectively). Tissue blood flow was measured to brown fat, heart, skeletal muscle, liver, kidneys, adrenals, skin, and white fat. Isoproterenol was found to increase blood flows to brown fat, skeletal muscle, and cardiac muscle in normal animals and to brown fat and skeletal muscle in dystrophic hamsters, suggesting that these tissues contribute to NST. However, when corrected for body weight differences, blood flows during isoproterenol infusion to skeletal muscle and to cardiac muscle did not significantly differ between normal and dystrophic animals (2.71 +/- 0.29 vs. 3.33 +/- 0.42 and 2.81 +/- 0.25 vs. 1.85 +/- 0.24 ml X 100 g body wt-1, respectively). In contrast, normal brown adipose tissue had significantly elevated blood flows (3.50 +/- 0.39 vs. 2.28 +/- 0.27 ml X 100 g body wt-1). Thus these observations provide in vivo support for the conclusion that the reduced NST capacity of dystrophic hamsters is due, in large part, to a reduced thermogenic contribution of brown fat.

AB - The genetically dystrophic line of hamsters (BIO 14.6) has a significantly reduced capacity for nonshivering thermogenesis (NST) when compared with age-matched normal animals. Of those tissues contributing most to NST, three are altered in the dystrophic hamster (brown fat and cardiac and skeletal muscle). This study has used regional blood flows in response to isoproterenol (a potent stimulator of NST) as a measure of the potential contribution of these tissues to NST. Both isoproterenol-induced O2 consumption and cardiac output were lower in the dystrophic hamsters (13.0 +/- 0.4 vs. 18.2 +/- 0.68 ml O2 X g-0.67 X h-1 and 2.10 +/- 0.10 vs 2.98 +/- 0.16 ml X g-0.67 X min-1, respectively). Tissue blood flow was measured to brown fat, heart, skeletal muscle, liver, kidneys, adrenals, skin, and white fat. Isoproterenol was found to increase blood flows to brown fat, skeletal muscle, and cardiac muscle in normal animals and to brown fat and skeletal muscle in dystrophic hamsters, suggesting that these tissues contribute to NST. However, when corrected for body weight differences, blood flows during isoproterenol infusion to skeletal muscle and to cardiac muscle did not significantly differ between normal and dystrophic animals (2.71 +/- 0.29 vs. 3.33 +/- 0.42 and 2.81 +/- 0.25 vs. 1.85 +/- 0.24 ml X 100 g body wt-1, respectively). In contrast, normal brown adipose tissue had significantly elevated blood flows (3.50 +/- 0.39 vs. 2.28 +/- 0.27 ml X 100 g body wt-1). Thus these observations provide in vivo support for the conclusion that the reduced NST capacity of dystrophic hamsters is due, in large part, to a reduced thermogenic contribution of brown fat.

UR - http://www.scopus.com/inward/record.url?scp=0021467127&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=0021467127&partnerID=8YFLogxK

M3 - Article

C2 - 6742230

AN - SCOPUS:0021467127

VL - 247

JO - American Journal of Physiology - Renal Fluid and Electrolyte Physiology

JF - American Journal of Physiology - Renal Fluid and Electrolyte Physiology

SN - 1931-857X

IS - 1 Pt 2

ER -