Blinded laboratory comparison of the in situ enzyme immunoassay, the VecTest wicking assay, and a reverse transcription-polymerase chain reaction assay to detect mosquitoes infected with West Nile and St. Louis encephalitis viruses

Robert E. Chiles, Emily N. Green, Ying Fang, Laura Goddard, Amy Roth, William Reisen, Thomas W. Scott

Research output: Contribution to journalArticle

14 Citations (Scopus)

Abstract

A blinded laboratory evaluation compared the accuracy, sensitivity, and specificity of an in situ enzyme immunoassay (EIA), VecTest wicking assay, and reverse transcription-polymerase chain reaction (RT-PCR) to detect and distinguish West Nile (WN) and St. Louis encephalitis (SLE) viruses in pools of 50 mosquitoes. Adult female Culex tarsalis Coquillett were inoculated with either WN or SLE viruses, held for 0-11 d at 28°C, killed by freezing, and then were added to 49 or 48 uninfected mosquitoes to make up 14 pools positive for WN virus, 14 positive for SLE virus, 14 positive for both WN and SLE viruses, and 14 negative for virus. Pools were number coded and tested blindly. Virus was not detected in known negative pools. VecTest and RT-PCR assays were comparably sensitive and accurate, detecting virus in pools containing females held for 3 d postinoculation; only RT-PCR detected SLE virus in pools on days 0-1. The VecTest and RT-PCR produced a single false-positive result for WN and SLE, respectively. RT-PCR detected RNA in samples positive by the VecTest, indicating that the detergent in the wicking buffer did not prevent RT-PCR from confirming VecTest results. Detector antibodies used in the in situ EIA cross-reacted between SLE and WN viruses, reducing accuracy. Both the VecTest and RT-PCR provided rapid and specific results, but they detected only those viruses known to be present. Plaque assay on Vero cells was comparably sensitive and had the added benefit of detecting newly emerging viruses, but this method required virus culture followed by identification, thereby delaying reporting.

Original languageEnglish (US)
Pages (from-to)539-544
Number of pages6
JournalJournal of Medical Entomology
Volume41
Issue number4
DOIs
StatePublished - Jan 1 2004

Fingerprint

St. Louis Encephalitis Viruses
Saint Louis encephalitis virus
Capillary Action
enzyme immunoassays
Culicidae
Immunoenzyme Techniques
Reverse Transcription
reverse transcriptase polymerase chain reaction
Polymerase Chain Reaction
Viruses
assays
St. Louis Encephalitis
viruses
West Nile virus
encephalitis
Culex tarsalis
Culex
Vero Cells
detergents
Detergents

Keywords

  • In situ enzyme immunoassay
  • Reverse transcription-polymerase chain reaction
  • St. Louis encephalitis virus
  • VecTest wicking assay
  • West Nile virus

ASJC Scopus subject areas

  • Parasitology
  • veterinary(all)
  • Insect Science
  • Infectious Diseases

Cite this

Blinded laboratory comparison of the in situ enzyme immunoassay, the VecTest wicking assay, and a reverse transcription-polymerase chain reaction assay to detect mosquitoes infected with West Nile and St. Louis encephalitis viruses. / Chiles, Robert E.; Green, Emily N.; Fang, Ying; Goddard, Laura; Roth, Amy; Reisen, William; Scott, Thomas W.

In: Journal of Medical Entomology, Vol. 41, No. 4, 01.01.2004, p. 539-544.

Research output: Contribution to journalArticle

@article{ea07272e140d4e5cbba9da31d8ff1099,
title = "Blinded laboratory comparison of the in situ enzyme immunoassay, the VecTest wicking assay, and a reverse transcription-polymerase chain reaction assay to detect mosquitoes infected with West Nile and St. Louis encephalitis viruses",
abstract = "A blinded laboratory evaluation compared the accuracy, sensitivity, and specificity of an in situ enzyme immunoassay (EIA), VecTest wicking assay, and reverse transcription-polymerase chain reaction (RT-PCR) to detect and distinguish West Nile (WN) and St. Louis encephalitis (SLE) viruses in pools of 50 mosquitoes. Adult female Culex tarsalis Coquillett were inoculated with either WN or SLE viruses, held for 0-11 d at 28°C, killed by freezing, and then were added to 49 or 48 uninfected mosquitoes to make up 14 pools positive for WN virus, 14 positive for SLE virus, 14 positive for both WN and SLE viruses, and 14 negative for virus. Pools were number coded and tested blindly. Virus was not detected in known negative pools. VecTest and RT-PCR assays were comparably sensitive and accurate, detecting virus in pools containing females held for 3 d postinoculation; only RT-PCR detected SLE virus in pools on days 0-1. The VecTest and RT-PCR produced a single false-positive result for WN and SLE, respectively. RT-PCR detected RNA in samples positive by the VecTest, indicating that the detergent in the wicking buffer did not prevent RT-PCR from confirming VecTest results. Detector antibodies used in the in situ EIA cross-reacted between SLE and WN viruses, reducing accuracy. Both the VecTest and RT-PCR provided rapid and specific results, but they detected only those viruses known to be present. Plaque assay on Vero cells was comparably sensitive and had the added benefit of detecting newly emerging viruses, but this method required virus culture followed by identification, thereby delaying reporting.",
keywords = "In situ enzyme immunoassay, Reverse transcription-polymerase chain reaction, St. Louis encephalitis virus, VecTest wicking assay, West Nile virus",
author = "Chiles, {Robert E.} and Green, {Emily N.} and Ying Fang and Laura Goddard and Amy Roth and William Reisen and Scott, {Thomas W.}",
year = "2004",
month = "1",
day = "1",
doi = "10.1603/0022-2585-41.4.539",
language = "English (US)",
volume = "41",
pages = "539--544",
journal = "Journal of Medical Entomology",
issn = "0022-2585",
publisher = "Entomological Society of America",
number = "4",

}

TY - JOUR

T1 - Blinded laboratory comparison of the in situ enzyme immunoassay, the VecTest wicking assay, and a reverse transcription-polymerase chain reaction assay to detect mosquitoes infected with West Nile and St. Louis encephalitis viruses

AU - Chiles, Robert E.

AU - Green, Emily N.

AU - Fang, Ying

AU - Goddard, Laura

AU - Roth, Amy

AU - Reisen, William

AU - Scott, Thomas W.

PY - 2004/1/1

Y1 - 2004/1/1

N2 - A blinded laboratory evaluation compared the accuracy, sensitivity, and specificity of an in situ enzyme immunoassay (EIA), VecTest wicking assay, and reverse transcription-polymerase chain reaction (RT-PCR) to detect and distinguish West Nile (WN) and St. Louis encephalitis (SLE) viruses in pools of 50 mosquitoes. Adult female Culex tarsalis Coquillett were inoculated with either WN or SLE viruses, held for 0-11 d at 28°C, killed by freezing, and then were added to 49 or 48 uninfected mosquitoes to make up 14 pools positive for WN virus, 14 positive for SLE virus, 14 positive for both WN and SLE viruses, and 14 negative for virus. Pools were number coded and tested blindly. Virus was not detected in known negative pools. VecTest and RT-PCR assays were comparably sensitive and accurate, detecting virus in pools containing females held for 3 d postinoculation; only RT-PCR detected SLE virus in pools on days 0-1. The VecTest and RT-PCR produced a single false-positive result for WN and SLE, respectively. RT-PCR detected RNA in samples positive by the VecTest, indicating that the detergent in the wicking buffer did not prevent RT-PCR from confirming VecTest results. Detector antibodies used in the in situ EIA cross-reacted between SLE and WN viruses, reducing accuracy. Both the VecTest and RT-PCR provided rapid and specific results, but they detected only those viruses known to be present. Plaque assay on Vero cells was comparably sensitive and had the added benefit of detecting newly emerging viruses, but this method required virus culture followed by identification, thereby delaying reporting.

AB - A blinded laboratory evaluation compared the accuracy, sensitivity, and specificity of an in situ enzyme immunoassay (EIA), VecTest wicking assay, and reverse transcription-polymerase chain reaction (RT-PCR) to detect and distinguish West Nile (WN) and St. Louis encephalitis (SLE) viruses in pools of 50 mosquitoes. Adult female Culex tarsalis Coquillett were inoculated with either WN or SLE viruses, held for 0-11 d at 28°C, killed by freezing, and then were added to 49 or 48 uninfected mosquitoes to make up 14 pools positive for WN virus, 14 positive for SLE virus, 14 positive for both WN and SLE viruses, and 14 negative for virus. Pools were number coded and tested blindly. Virus was not detected in known negative pools. VecTest and RT-PCR assays were comparably sensitive and accurate, detecting virus in pools containing females held for 3 d postinoculation; only RT-PCR detected SLE virus in pools on days 0-1. The VecTest and RT-PCR produced a single false-positive result for WN and SLE, respectively. RT-PCR detected RNA in samples positive by the VecTest, indicating that the detergent in the wicking buffer did not prevent RT-PCR from confirming VecTest results. Detector antibodies used in the in situ EIA cross-reacted between SLE and WN viruses, reducing accuracy. Both the VecTest and RT-PCR provided rapid and specific results, but they detected only those viruses known to be present. Plaque assay on Vero cells was comparably sensitive and had the added benefit of detecting newly emerging viruses, but this method required virus culture followed by identification, thereby delaying reporting.

KW - In situ enzyme immunoassay

KW - Reverse transcription-polymerase chain reaction

KW - St. Louis encephalitis virus

KW - VecTest wicking assay

KW - West Nile virus

UR - http://www.scopus.com/inward/record.url?scp=3342918508&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=3342918508&partnerID=8YFLogxK

U2 - 10.1603/0022-2585-41.4.539

DO - 10.1603/0022-2585-41.4.539

M3 - Article

VL - 41

SP - 539

EP - 544

JO - Journal of Medical Entomology

JF - Journal of Medical Entomology

SN - 0022-2585

IS - 4

ER -