BC tree-based spectral sampling for big complex network visualization

Jingming Hu, Tuan Tran Chu, Seok Hee Hong, Jialu Chen, Amyra Meidiana, Marnijati Torkel, Peter Eades, Kwan Liu Ma

Research output: Contribution to journalArticlepeer-review


Graph sampling methods have been used to reduce the size and complexity of big complex networks for graph mining and visualization. However, existing graph sampling methods often fail to preserve the connectivity and important structures of the original graph. This paper introduces a new divide and conquer approach to spectral graph sampling based on graph connectivity, called the BC Tree (i.e., decomposition of a connected graph into biconnected components) and spectral sparsification. Specifically, we present two methods, spectral vertex sampling BC_SV and spectral edge sampling BC_SS by computing effective resistance values of vertices and edges for each connected component. Furthermore, we present DBC_SS and DBC_GD, graph connectivity-based distributed algorithms for spectral sparsification and graph drawing respectively, aiming to further improve the runtime efficiency of spectral sparsification and graph drawing by integrating connectivity-based graph decomposition and distributed computing. Experimental results demonstrate that BC_SV and BC_SS are significantly faster than previous spectral graph sampling methods while preserving the same sampling quality. DBC_SS and DBC_GD obtain further significant runtime improvement over sequential approaches, and DBC_GD further achieves significant improvements in quality metrics over sequential graph drawing layouts.

Original languageEnglish (US)
Article number60
JournalApplied Network Science
Issue number1
StatePublished - Dec 2021


  • Connectivity
  • Graph sampling
  • Spectral sparsification

ASJC Scopus subject areas

  • General
  • Computer Networks and Communications
  • Computational Mathematics


Dive into the research topics of 'BC tree-based spectral sampling for big complex network visualization'. Together they form a unique fingerprint.

Cite this