Astroglial-mediated phosphorylation of the Na-K-Cl cotransporter in brain microvessel endothelial cells

Dandan Sun, Martha E O'Donnell

Research output: Contribution to journalArticle

18 Citations (Scopus)

Abstract

Our previous studies have shown that cerebral microvessel endothelial cells (CMEC) express a Na-K-Cl cotransporter and that exposure of CMEC to astroglial cells causes a nearly 2-fold increase in activity of the cotransporter but only 1.5-fold increase in expression of cotransport protein [D. Sun, C. Lytle, and M. E. O'Donnell. Am. J. Physiol. 269 (Cell Physiol. 38): C1506-C1512, 1995]. This finding suggests that the astroglial cell effects may be mediated by mechanisms involving cotransporter activation in addition to increased protein expression. In the present study, we evaluated the role of protein phosphorylation in elevation of CMEC cotransport activity by astroglial cells and extracellular hypertonicity. We also examined the effects of protein phosphatase and protein kinase inhibitors on both cotransporter activity and phosphorylation in CMEC. The phosphorylation level of Na-K-Cl cotransport protein was quantitatively evaluated by immunoprecipitation analysis with the use of a monoclonal antibody to the cotransporter after 32P labeling of cultured CMEC. Activity of the cotransporter was assessed as bumetanide-sensitive K influx. We found that the phosphatase inhibitors calyculin A and okadaic acid significantly increased both cotransport activity and phosphorylation of cotransport protein. Activity and phosphorylation level of the cotransporter were also markedly increased by exposing the cells to astroglial cell-conditioned or hypertonic medium. Moreover, the astroglial-induced stimulation of the CMEC cotransporter was inhibited by the protein kinase inhibitor K-252a. These findings suggest that phosphorylation of cotransport protein plays an important role in regulation of Na-K-Cl cotransport activity and that astroglial-induced elevation of cotransport activity involves both phosphorylation-associated stimulation of cotransport activity and increased expression of the cotransporter protein.

Original languageEnglish (US)
JournalAmerican Journal of Physiology - Cell Physiology
Volume271
Issue number2 40-2
StatePublished - Aug 1996

Fingerprint

Sodium-Potassium-Chloride Symporters
Phosphorylation
Endothelial cells
Microvessels
Brain
Endothelial Cells
Proteins
Protein Kinase Inhibitors
Bumetanide
Okadaic Acid
Phosphoprotein Phosphatases
Phosphoric Monoester Hydrolases
Immunoprecipitation
Labeling
Chemical activation
Monoclonal Antibodies

Keywords

  • blood-brain barrier
  • bumetanide
  • C glioma cells
  • cultured cerebral microvessel endothelial cells
  • phosphatase
  • primary astrocytes
  • protein kinase
  • sodium-potassium-chloride cotransporter

ASJC Scopus subject areas

  • Clinical Biochemistry
  • Cell Biology
  • Physiology

Cite this

@article{a3cdfbb4bc5e404e8ccad2c90f128f1c,
title = "Astroglial-mediated phosphorylation of the Na-K-Cl cotransporter in brain microvessel endothelial cells",
abstract = "Our previous studies have shown that cerebral microvessel endothelial cells (CMEC) express a Na-K-Cl cotransporter and that exposure of CMEC to astroglial cells causes a nearly 2-fold increase in activity of the cotransporter but only 1.5-fold increase in expression of cotransport protein [D. Sun, C. Lytle, and M. E. O'Donnell. Am. J. Physiol. 269 (Cell Physiol. 38): C1506-C1512, 1995]. This finding suggests that the astroglial cell effects may be mediated by mechanisms involving cotransporter activation in addition to increased protein expression. In the present study, we evaluated the role of protein phosphorylation in elevation of CMEC cotransport activity by astroglial cells and extracellular hypertonicity. We also examined the effects of protein phosphatase and protein kinase inhibitors on both cotransporter activity and phosphorylation in CMEC. The phosphorylation level of Na-K-Cl cotransport protein was quantitatively evaluated by immunoprecipitation analysis with the use of a monoclonal antibody to the cotransporter after 32P labeling of cultured CMEC. Activity of the cotransporter was assessed as bumetanide-sensitive K influx. We found that the phosphatase inhibitors calyculin A and okadaic acid significantly increased both cotransport activity and phosphorylation of cotransport protein. Activity and phosphorylation level of the cotransporter were also markedly increased by exposing the cells to astroglial cell-conditioned or hypertonic medium. Moreover, the astroglial-induced stimulation of the CMEC cotransporter was inhibited by the protein kinase inhibitor K-252a. These findings suggest that phosphorylation of cotransport protein plays an important role in regulation of Na-K-Cl cotransport activity and that astroglial-induced elevation of cotransport activity involves both phosphorylation-associated stimulation of cotransport activity and increased expression of the cotransporter protein.",
keywords = "blood-brain barrier, bumetanide, C glioma cells, cultured cerebral microvessel endothelial cells, phosphatase, primary astrocytes, protein kinase, sodium-potassium-chloride cotransporter",
author = "Dandan Sun and O'Donnell, {Martha E}",
year = "1996",
month = "8",
language = "English (US)",
volume = "271",
journal = "American Journal of Physiology - Renal Fluid and Electrolyte Physiology",
issn = "1931-857X",
publisher = "American Physiological Society",
number = "2 40-2",

}

TY - JOUR

T1 - Astroglial-mediated phosphorylation of the Na-K-Cl cotransporter in brain microvessel endothelial cells

AU - Sun, Dandan

AU - O'Donnell, Martha E

PY - 1996/8

Y1 - 1996/8

N2 - Our previous studies have shown that cerebral microvessel endothelial cells (CMEC) express a Na-K-Cl cotransporter and that exposure of CMEC to astroglial cells causes a nearly 2-fold increase in activity of the cotransporter but only 1.5-fold increase in expression of cotransport protein [D. Sun, C. Lytle, and M. E. O'Donnell. Am. J. Physiol. 269 (Cell Physiol. 38): C1506-C1512, 1995]. This finding suggests that the astroglial cell effects may be mediated by mechanisms involving cotransporter activation in addition to increased protein expression. In the present study, we evaluated the role of protein phosphorylation in elevation of CMEC cotransport activity by astroglial cells and extracellular hypertonicity. We also examined the effects of protein phosphatase and protein kinase inhibitors on both cotransporter activity and phosphorylation in CMEC. The phosphorylation level of Na-K-Cl cotransport protein was quantitatively evaluated by immunoprecipitation analysis with the use of a monoclonal antibody to the cotransporter after 32P labeling of cultured CMEC. Activity of the cotransporter was assessed as bumetanide-sensitive K influx. We found that the phosphatase inhibitors calyculin A and okadaic acid significantly increased both cotransport activity and phosphorylation of cotransport protein. Activity and phosphorylation level of the cotransporter were also markedly increased by exposing the cells to astroglial cell-conditioned or hypertonic medium. Moreover, the astroglial-induced stimulation of the CMEC cotransporter was inhibited by the protein kinase inhibitor K-252a. These findings suggest that phosphorylation of cotransport protein plays an important role in regulation of Na-K-Cl cotransport activity and that astroglial-induced elevation of cotransport activity involves both phosphorylation-associated stimulation of cotransport activity and increased expression of the cotransporter protein.

AB - Our previous studies have shown that cerebral microvessel endothelial cells (CMEC) express a Na-K-Cl cotransporter and that exposure of CMEC to astroglial cells causes a nearly 2-fold increase in activity of the cotransporter but only 1.5-fold increase in expression of cotransport protein [D. Sun, C. Lytle, and M. E. O'Donnell. Am. J. Physiol. 269 (Cell Physiol. 38): C1506-C1512, 1995]. This finding suggests that the astroglial cell effects may be mediated by mechanisms involving cotransporter activation in addition to increased protein expression. In the present study, we evaluated the role of protein phosphorylation in elevation of CMEC cotransport activity by astroglial cells and extracellular hypertonicity. We also examined the effects of protein phosphatase and protein kinase inhibitors on both cotransporter activity and phosphorylation in CMEC. The phosphorylation level of Na-K-Cl cotransport protein was quantitatively evaluated by immunoprecipitation analysis with the use of a monoclonal antibody to the cotransporter after 32P labeling of cultured CMEC. Activity of the cotransporter was assessed as bumetanide-sensitive K influx. We found that the phosphatase inhibitors calyculin A and okadaic acid significantly increased both cotransport activity and phosphorylation of cotransport protein. Activity and phosphorylation level of the cotransporter were also markedly increased by exposing the cells to astroglial cell-conditioned or hypertonic medium. Moreover, the astroglial-induced stimulation of the CMEC cotransporter was inhibited by the protein kinase inhibitor K-252a. These findings suggest that phosphorylation of cotransport protein plays an important role in regulation of Na-K-Cl cotransport activity and that astroglial-induced elevation of cotransport activity involves both phosphorylation-associated stimulation of cotransport activity and increased expression of the cotransporter protein.

KW - blood-brain barrier

KW - bumetanide

KW - C glioma cells

KW - cultured cerebral microvessel endothelial cells

KW - phosphatase

KW - primary astrocytes

KW - protein kinase

KW - sodium-potassium-chloride cotransporter

UR - http://www.scopus.com/inward/record.url?scp=0029757470&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=0029757470&partnerID=8YFLogxK

M3 - Article

C2 - 8770003

AN - SCOPUS:0029757470

VL - 271

JO - American Journal of Physiology - Renal Fluid and Electrolyte Physiology

JF - American Journal of Physiology - Renal Fluid and Electrolyte Physiology

SN - 1931-857X

IS - 2 40-2

ER -