Applications of gene arrays in environmental toxicology: Fingerprints of gene regulation associated with cadmium chloride, benzo(a)pyrene, and trichloroethylene

M. Bartosiewicz, S. Penn, Alan R Buckpitt

Research output: Contribution to journalArticlepeer-review

150 Scopus citations


Toxicity testing of unknown chemicals currently uses a number of short-term bioassays. These tests are costly and time consuming, require large numbers of animals, and generally focus on a single end point. The recent development of DNA arrays provides a potential mechanism for increasing the efficiency of standard toxicity testing through genome-wide assessments of gene regulation. In this study, we used DNA arrays containing 148 genes for xenobiotic metabolizing enzymes, DNA repair enzymes, heat shock proteins, cytokines, and housekeeping genes to examine gene expression patterns in the liver in response to cadmium chloride, benzo(a)pyrene (BaP), and trichloroethylene (TCE). Dose-response studies were carried out in mice for each chemical; each produced a unique pattern of gene induction. As expected, CdCl2 markedly up-regulated metallothionine I and II (5- to 10,000-fold at the highest doses) and several of the heat shock/stress response proteins and early response genes. In contrast, administration of BaP upregulated only Cypla1 and Cypla2 genes and produced no significant increases in any of the stress response genes or any of the DNA repair genes present on the array. Likewise, TCE-induced gene induction was highly selective; only Hsp 25 and 86 and Cyp2a were up-regulated at the highest dose tested. Microarray analysis with a highly focused set of genes is capable of discriminating between different classes of toxicants and has potential for differentiating highly noxious versus more subtle toxic agents. These data suggest that use of microarrays to evaluate the potential hazards of unknown chemicals or chemical mixtures must include multiple doses and time points to provide effective assessments of potential toxicity of these substances.

Original languageEnglish (US)
Pages (from-to)71-74
Number of pages4
JournalEnvironmental Health Perspectives
Issue number1
StatePublished - 2001


  • Benzo(a)pyrene
  • Cadmium chloride
  • DNA arrays
  • Gene expression
  • Trichloroethylene

ASJC Scopus subject areas

  • Environmental Science(all)
  • Environmental Chemistry
  • Public Health, Environmental and Occupational Health


Dive into the research topics of 'Applications of gene arrays in environmental toxicology: Fingerprints of gene regulation associated with cadmium chloride, benzo(a)pyrene, and trichloroethylene'. Together they form a unique fingerprint.

Cite this