Analysis of intraflagellar transport in C. elegans sensory cilia.

Limin Hao, Seyda Acar, James Evans, Guangshuo Ou, Jonathan M. Scholey

Research output: Contribution to journalArticlepeer-review

11 Scopus citations

Abstract

Cilia are assembled and maintained by intraflagellar transport (IFT), the motor-dependent, bidirectional movement of multiprotein complexes, called IFT particles, along the axoneme. The sensory cilia of Caenorhabditis elegans represent very useful objects for studying IFT because of the availability of in vivo time-lapse fluorescence microscopy assays of IFT and multiple ciliary mutants. In this system there are 60 sensory neurons, each having sensory cilia on the endings of their dendrites, and most components of the IFT machinery operating in these structures have been identified using forward and reverse genetic approaches. By analyzing the rate of IFT along cilia within living wild-type and mutant animals, two anterograde and one retrograde IFT motors were identified, the functional coordination of the two anterograde kinesin-2 motors was established and the transport properties of all the known IFT particle components have been characterized. The anterograde kinesin motors have been heterologously expressed and purified, and their biochemical properties have been characterized using MT gliding and single molecule motility assays. In this chapter, we summarize how the tools of genetics, cell biology, electron microscopy, and biochemistry are being used to dissect the composition and mechanism of action of IFT motors and IFT particles in C. elegans. 2009 Elsevier Inc. All rights reserved.

Original languageEnglish (US)
Pages (from-to)235-266
Number of pages32
JournalMethods in Cell Biology
Volume93
DOIs
StatePublished - 2009
Externally publishedYes

ASJC Scopus subject areas

  • Cell Biology

Fingerprint Dive into the research topics of 'Analysis of intraflagellar transport in C. elegans sensory cilia.'. Together they form a unique fingerprint.

Cite this