An Electrostatic Funnel in the GABA-Binding Pathway

Timothy S. Carpenter, Felice C Lightstone

Research output: Contribution to journalArticle

3 Citations (Scopus)

Abstract

The γ-aminobutyric acid type A receptor (GABAA-R) is a major inhibitory neuroreceptor that is activated by the binding of GABA. The structure of the GABAA-R is well characterized, and many of the binding site residues have been identified. However, most of these residues are obscured behind the C-loop that acts as a cover to the binding site. Thus, the mechanism by which the GABA molecule recognizes the binding site, and the pathway it takes to enter the binding site are both unclear. Through the completion and detailed analysis of 100 short, unbiased, independent molecular dynamics simulations, we have investigated this phenomenon of GABA entering the binding site. In each system, GABA was placed quasi-randomly near the binding site of a GABAA-R homology model, and atomistic simulations were carried out to observe the behavior of the GABA molecules. GABA fully entered the binding site in 19 of the 100 simulations. The pathway taken by these molecules was consistent and non-random; the GABA molecules approach the binding site from below, before passing up behind the C-loop and into the binding site. This binding pathway is driven by long-range electrostatic interactions, whereby the electrostatic field acts as a ‘funnel’ that sweeps the GABA molecules towards the binding site, at which point more specific atomic interactions take over. These findings define a nuanced mechanism whereby the GABAA-R uses the general zwitterionic features of the GABA molecule to identify a potential ligand some 2 nm away from the binding site.

Original languageEnglish (US)
Article numbere1004831
JournalPLoS Computational Biology
Volume12
Issue number4
DOIs
StatePublished - Apr 1 2016
Externally publishedYes

Fingerprint

gamma-aminobutyric acid
Binding sites
Static Electricity
Electrostatics
gamma-Aminobutyric Acid
binding sites
Pathway
Binding Sites
simulation
Molecules
homology
ligand
acid
Aminobutyrates
electrostatic interactions
molecular dynamics
Electrostatic Field
Sensory Receptor Cells
Atomistic Simulation
Molecular Dynamics Simulation

ASJC Scopus subject areas

  • Computational Theory and Mathematics
  • Modeling and Simulation
  • Ecology, Evolution, Behavior and Systematics
  • Genetics
  • Molecular Biology
  • Ecology
  • Cellular and Molecular Neuroscience

Cite this

An Electrostatic Funnel in the GABA-Binding Pathway. / Carpenter, Timothy S.; Lightstone, Felice C.

In: PLoS Computational Biology, Vol. 12, No. 4, e1004831, 01.04.2016.

Research output: Contribution to journalArticle

@article{d91d9b2bbf244de1a9f2dd1566021ee9,
title = "An Electrostatic Funnel in the GABA-Binding Pathway",
abstract = "The γ-aminobutyric acid type A receptor (GABAA-R) is a major inhibitory neuroreceptor that is activated by the binding of GABA. The structure of the GABAA-R is well characterized, and many of the binding site residues have been identified. However, most of these residues are obscured behind the C-loop that acts as a cover to the binding site. Thus, the mechanism by which the GABA molecule recognizes the binding site, and the pathway it takes to enter the binding site are both unclear. Through the completion and detailed analysis of 100 short, unbiased, independent molecular dynamics simulations, we have investigated this phenomenon of GABA entering the binding site. In each system, GABA was placed quasi-randomly near the binding site of a GABAA-R homology model, and atomistic simulations were carried out to observe the behavior of the GABA molecules. GABA fully entered the binding site in 19 of the 100 simulations. The pathway taken by these molecules was consistent and non-random; the GABA molecules approach the binding site from below, before passing up behind the C-loop and into the binding site. This binding pathway is driven by long-range electrostatic interactions, whereby the electrostatic field acts as a ‘funnel’ that sweeps the GABA molecules towards the binding site, at which point more specific atomic interactions take over. These findings define a nuanced mechanism whereby the GABAA-R uses the general zwitterionic features of the GABA molecule to identify a potential ligand some 2 nm away from the binding site.",
author = "Carpenter, {Timothy S.} and Lightstone, {Felice C}",
year = "2016",
month = "4",
day = "1",
doi = "10.1371/journal.pcbi.1004831",
language = "English (US)",
volume = "12",
journal = "PLoS Computational Biology",
issn = "1553-734X",
publisher = "Public Library of Science",
number = "4",

}

TY - JOUR

T1 - An Electrostatic Funnel in the GABA-Binding Pathway

AU - Carpenter, Timothy S.

AU - Lightstone, Felice C

PY - 2016/4/1

Y1 - 2016/4/1

N2 - The γ-aminobutyric acid type A receptor (GABAA-R) is a major inhibitory neuroreceptor that is activated by the binding of GABA. The structure of the GABAA-R is well characterized, and many of the binding site residues have been identified. However, most of these residues are obscured behind the C-loop that acts as a cover to the binding site. Thus, the mechanism by which the GABA molecule recognizes the binding site, and the pathway it takes to enter the binding site are both unclear. Through the completion and detailed analysis of 100 short, unbiased, independent molecular dynamics simulations, we have investigated this phenomenon of GABA entering the binding site. In each system, GABA was placed quasi-randomly near the binding site of a GABAA-R homology model, and atomistic simulations were carried out to observe the behavior of the GABA molecules. GABA fully entered the binding site in 19 of the 100 simulations. The pathway taken by these molecules was consistent and non-random; the GABA molecules approach the binding site from below, before passing up behind the C-loop and into the binding site. This binding pathway is driven by long-range electrostatic interactions, whereby the electrostatic field acts as a ‘funnel’ that sweeps the GABA molecules towards the binding site, at which point more specific atomic interactions take over. These findings define a nuanced mechanism whereby the GABAA-R uses the general zwitterionic features of the GABA molecule to identify a potential ligand some 2 nm away from the binding site.

AB - The γ-aminobutyric acid type A receptor (GABAA-R) is a major inhibitory neuroreceptor that is activated by the binding of GABA. The structure of the GABAA-R is well characterized, and many of the binding site residues have been identified. However, most of these residues are obscured behind the C-loop that acts as a cover to the binding site. Thus, the mechanism by which the GABA molecule recognizes the binding site, and the pathway it takes to enter the binding site are both unclear. Through the completion and detailed analysis of 100 short, unbiased, independent molecular dynamics simulations, we have investigated this phenomenon of GABA entering the binding site. In each system, GABA was placed quasi-randomly near the binding site of a GABAA-R homology model, and atomistic simulations were carried out to observe the behavior of the GABA molecules. GABA fully entered the binding site in 19 of the 100 simulations. The pathway taken by these molecules was consistent and non-random; the GABA molecules approach the binding site from below, before passing up behind the C-loop and into the binding site. This binding pathway is driven by long-range electrostatic interactions, whereby the electrostatic field acts as a ‘funnel’ that sweeps the GABA molecules towards the binding site, at which point more specific atomic interactions take over. These findings define a nuanced mechanism whereby the GABAA-R uses the general zwitterionic features of the GABA molecule to identify a potential ligand some 2 nm away from the binding site.

UR - http://www.scopus.com/inward/record.url?scp=84964765958&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=84964765958&partnerID=8YFLogxK

U2 - 10.1371/journal.pcbi.1004831

DO - 10.1371/journal.pcbi.1004831

M3 - Article

C2 - 27119953

AN - SCOPUS:84964765958

VL - 12

JO - PLoS Computational Biology

JF - PLoS Computational Biology

SN - 1553-734X

IS - 4

M1 - e1004831

ER -