An automated technique for estimating patient-specific regional imparted energy and dose in TCM CT exams

Jeremiah W. Sanders, Xiaoyu Tian, W. Paul Segars, John M Boone, Ehsan Samei

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

Currently computed tomography (CT) dosimetry relies on CT dose index (CTDI) and size specific dose estimates (SSDE). Organ dose is a better metric of radiation burden. However, organ dose estimation requires precise knowledge of organ locations. Regional imparted energy and dose can also be used to quantify radiation burden. Estimating the imparted energy from CT exams is beneficial in that it does not require precise estimates of the organ size or location. This work investigated an automated technique for retrospectively estimating the imparted energy from chest and abdominopelvic tube current modulated (TCM) CT exams. Monte Carlo simulations of chest and abdominopelvic TCM CT examinations across various tube potentials and TCM strengths were performed on 58 adult computational extended cardiac-torso (XCAT) phantoms to develop relationships between scanned mass and imparted energy normalized by dose length product (DLP). An automated algorithm for calculating the scanned patient volume was further developed using an open source mesh generation toolbox. The scanned patient volume was then used to estimate the scanned mass accounting for diverse density within the scan region. The scanned mass and DLP from the exam were used to estimate the imparted energy to the patient using the knowledgebase developed from the Monte Carlo simulations. Patientspecific imparted energy estimates were made from 20 chest and 20 abdominopelvic clinical CT exams. The average imparted energy was 274 ± 141 mJ and 681 ± 376 mJ for the chest and abdominopelvic exams, respectively. This method can be used to estimate the regional imparted energy and/or regional dose in chest and abdominopelvic TCM CT exams across clinical operations.

Original languageEnglish (US)
Title of host publicationMedical Imaging 2016: Physics of Medical Imaging
PublisherSPIE
Volume9783
ISBN (Electronic)9781510600188
DOIs
StatePublished - 2016
EventMedical Imaging 2016: Physics of Medical Imaging - San Diego, United States
Duration: Feb 28 2016Mar 2 2016

Other

OtherMedical Imaging 2016: Physics of Medical Imaging
CountryUnited States
CitySan Diego
Period2/28/163/2/16

Keywords

  • computed tomography
  • patient-specific
  • radiation risk
  • regional dose
  • Regional imparted energy

ASJC Scopus subject areas

  • Atomic and Molecular Physics, and Optics
  • Electronic, Optical and Magnetic Materials
  • Biomaterials
  • Radiology Nuclear Medicine and imaging

Fingerprint Dive into the research topics of 'An automated technique for estimating patient-specific regional imparted energy and dose in TCM CT exams'. Together they form a unique fingerprint.

  • Cite this

    Sanders, J. W., Tian, X., Segars, W. P., Boone, J. M., & Samei, E. (2016). An automated technique for estimating patient-specific regional imparted energy and dose in TCM CT exams. In Medical Imaging 2016: Physics of Medical Imaging (Vol. 9783). [97833I] SPIE. https://doi.org/10.1117/12.2216413