An analysis of the origins of the cholinergic and noncholinergic septal projections to the hippocampal formation of the rat

Research output: Contribution to journalArticle

562 Citations (Scopus)

Abstract

These experiments were directed at determining the proportion and distribution of cholinergic septal cells which project to the rat hippocampal formation. Injections of WGA-HRP were placed into different regions of the hippocampal formation and sections through the septal complex were processed for the simultaneous demonstration of the retrogradely transported marker and for choline acetyltransferase (ChAT) immunoreactivity. Preliminary analysis of adjacent normal series prepared either for the demonstration of ChAT or stained by the Nissl method demonstrated several distinct cell groups in the classically defined medial septal nucleus and vertical limb of the nucleus of the diagonal band. The groups of cells ranged from almost entirely ChAT-positive to entirely noncholinergic. On the basis of shape and size of the constituent cells, the ChAT-positive cells of the septal complex were divided into dorsal, intermediate, and ventral subdivisions. The proportion of retrogradely labeled cells that were also ChAT positive ranged from 22.8% to 77.4% in different experiments. When only the hippocampus and dentate gyrus are considered, this variation can largely be accounted for by the topographic organization of the septohippocampal projection. The medial, noncholinergic half of the medial septal nucleus projects primarily to the rostral or septal portions of the dentate gyrus and hippocampus, whereas the lateral half, in which the dorsal ChAT group is located, projects heavily to more temporal levels. Rostral portions of the hippocampus and dentate gyrus receive most of their cholinergic input from the ventral ChAT cell group which forms a major component of the vertical limb of the nucleus of the diagonal band. While some ChAT-positive cells in the intermediate group project to the hippocampal formation, they are generally less numerous than those from the dorsal and ventral groups. However, in a control experiment in which the WGA-HRP injection was placed into the cingulate cortex overlying the rostral hippocampal formation, the intermediate ChAT group accounted for 71.2% of the double-labeled cells.

Original languageEnglish (US)
Pages (from-to)37-59
Number of pages23
JournalJournal of Comparative Neurology
Volume240
Issue number1
StatePublished - 1985
Externally publishedYes

Fingerprint

Choline O-Acetyltransferase
Cholinergic Agents
Hippocampus
Septal Nuclei
Dentate Gyrus
Wheat Germ Agglutinin-Horseradish Peroxidase Conjugate
Extremities
Parahippocampal Gyrus
Injections
Gyrus Cinguli
Cell Size

ASJC Scopus subject areas

  • Neuroscience(all)

Cite this

@article{bf097ad6891e4b5fbf3d3f4bfd15fcf6,
title = "An analysis of the origins of the cholinergic and noncholinergic septal projections to the hippocampal formation of the rat",
abstract = "These experiments were directed at determining the proportion and distribution of cholinergic septal cells which project to the rat hippocampal formation. Injections of WGA-HRP were placed into different regions of the hippocampal formation and sections through the septal complex were processed for the simultaneous demonstration of the retrogradely transported marker and for choline acetyltransferase (ChAT) immunoreactivity. Preliminary analysis of adjacent normal series prepared either for the demonstration of ChAT or stained by the Nissl method demonstrated several distinct cell groups in the classically defined medial septal nucleus and vertical limb of the nucleus of the diagonal band. The groups of cells ranged from almost entirely ChAT-positive to entirely noncholinergic. On the basis of shape and size of the constituent cells, the ChAT-positive cells of the septal complex were divided into dorsal, intermediate, and ventral subdivisions. The proportion of retrogradely labeled cells that were also ChAT positive ranged from 22.8{\%} to 77.4{\%} in different experiments. When only the hippocampus and dentate gyrus are considered, this variation can largely be accounted for by the topographic organization of the septohippocampal projection. The medial, noncholinergic half of the medial septal nucleus projects primarily to the rostral or septal portions of the dentate gyrus and hippocampus, whereas the lateral half, in which the dorsal ChAT group is located, projects heavily to more temporal levels. Rostral portions of the hippocampus and dentate gyrus receive most of their cholinergic input from the ventral ChAT cell group which forms a major component of the vertical limb of the nucleus of the diagonal band. While some ChAT-positive cells in the intermediate group project to the hippocampal formation, they are generally less numerous than those from the dorsal and ventral groups. However, in a control experiment in which the WGA-HRP injection was placed into the cingulate cortex overlying the rostral hippocampal formation, the intermediate ChAT group accounted for 71.2{\%} of the double-labeled cells.",
author = "Amaral, {David G} and J. Kurz",
year = "1985",
language = "English (US)",
volume = "240",
pages = "37--59",
journal = "Journal of Comparative Neurology",
issn = "0021-9967",
publisher = "Wiley-Liss Inc.",
number = "1",

}

TY - JOUR

T1 - An analysis of the origins of the cholinergic and noncholinergic septal projections to the hippocampal formation of the rat

AU - Amaral, David G

AU - Kurz, J.

PY - 1985

Y1 - 1985

N2 - These experiments were directed at determining the proportion and distribution of cholinergic septal cells which project to the rat hippocampal formation. Injections of WGA-HRP were placed into different regions of the hippocampal formation and sections through the septal complex were processed for the simultaneous demonstration of the retrogradely transported marker and for choline acetyltransferase (ChAT) immunoreactivity. Preliminary analysis of adjacent normal series prepared either for the demonstration of ChAT or stained by the Nissl method demonstrated several distinct cell groups in the classically defined medial septal nucleus and vertical limb of the nucleus of the diagonal band. The groups of cells ranged from almost entirely ChAT-positive to entirely noncholinergic. On the basis of shape and size of the constituent cells, the ChAT-positive cells of the septal complex were divided into dorsal, intermediate, and ventral subdivisions. The proportion of retrogradely labeled cells that were also ChAT positive ranged from 22.8% to 77.4% in different experiments. When only the hippocampus and dentate gyrus are considered, this variation can largely be accounted for by the topographic organization of the septohippocampal projection. The medial, noncholinergic half of the medial septal nucleus projects primarily to the rostral or septal portions of the dentate gyrus and hippocampus, whereas the lateral half, in which the dorsal ChAT group is located, projects heavily to more temporal levels. Rostral portions of the hippocampus and dentate gyrus receive most of their cholinergic input from the ventral ChAT cell group which forms a major component of the vertical limb of the nucleus of the diagonal band. While some ChAT-positive cells in the intermediate group project to the hippocampal formation, they are generally less numerous than those from the dorsal and ventral groups. However, in a control experiment in which the WGA-HRP injection was placed into the cingulate cortex overlying the rostral hippocampal formation, the intermediate ChAT group accounted for 71.2% of the double-labeled cells.

AB - These experiments were directed at determining the proportion and distribution of cholinergic septal cells which project to the rat hippocampal formation. Injections of WGA-HRP were placed into different regions of the hippocampal formation and sections through the septal complex were processed for the simultaneous demonstration of the retrogradely transported marker and for choline acetyltransferase (ChAT) immunoreactivity. Preliminary analysis of adjacent normal series prepared either for the demonstration of ChAT or stained by the Nissl method demonstrated several distinct cell groups in the classically defined medial septal nucleus and vertical limb of the nucleus of the diagonal band. The groups of cells ranged from almost entirely ChAT-positive to entirely noncholinergic. On the basis of shape and size of the constituent cells, the ChAT-positive cells of the septal complex were divided into dorsal, intermediate, and ventral subdivisions. The proportion of retrogradely labeled cells that were also ChAT positive ranged from 22.8% to 77.4% in different experiments. When only the hippocampus and dentate gyrus are considered, this variation can largely be accounted for by the topographic organization of the septohippocampal projection. The medial, noncholinergic half of the medial septal nucleus projects primarily to the rostral or septal portions of the dentate gyrus and hippocampus, whereas the lateral half, in which the dorsal ChAT group is located, projects heavily to more temporal levels. Rostral portions of the hippocampus and dentate gyrus receive most of their cholinergic input from the ventral ChAT cell group which forms a major component of the vertical limb of the nucleus of the diagonal band. While some ChAT-positive cells in the intermediate group project to the hippocampal formation, they are generally less numerous than those from the dorsal and ventral groups. However, in a control experiment in which the WGA-HRP injection was placed into the cingulate cortex overlying the rostral hippocampal formation, the intermediate ChAT group accounted for 71.2% of the double-labeled cells.

UR - http://www.scopus.com/inward/record.url?scp=0022006848&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=0022006848&partnerID=8YFLogxK

M3 - Article

VL - 240

SP - 37

EP - 59

JO - Journal of Comparative Neurology

JF - Journal of Comparative Neurology

SN - 0021-9967

IS - 1

ER -