Amyloid-β protein oligomer at low nanomolar concentrations activates microglia and induces microglial neurotoxicity

Research output: Contribution to journalArticle

151 Citations (Scopus)

Abstract

Neuroinflammation and associated neuronal dysfunction mediated by activated microglia play an important role in the pathogenesis of Alzheimer disease (AD). Microglia are activated by aggregated forms of amyloid-β protein (Aβ), usually demonstrated in vitro by stimulating microglia with micromolar concentrations of fibrillar Aβ, a major component of amyloid plaques in AD brains. Here we report that amyloid-β oligomer (AβO), at 5-50 nM, induces a unique pattern of microglia activation that requires the activity of the scavenger receptor A and the Ca2+-activated potassium channel KCa3.1. AβO treatment induced an activated morphological and biochemical profile of microglia, including activation of p38 MAPK and nuclear factor κB. Interestingly, although increasing nitric oxide (NO) production, AβO did not increase several proinflammatory mediators commonly induced by lipopolyliposacharides or fibrillar Aβ, suggesting that AβO stimulates both common and divergent pathways of microglia activation. AβO at low nanomolar concentrations, although not neurotoxic, induced indirect, microglia-mediated damage to neurons in dissociated cultures and in organotypic hippocampal slices. The indirect neurotoxicity was prevented by (i) doxycycline, an inhibitor of microglia activation; (ii) TRAM-34, a selective KCa3.1 blocker; and (iii) two inhibitors of inducible NO synthase, indicating that KCa3.1 activity and excessive NO release are required for AβO-induced microglial neurotoxicity. Our results suggest that AβO, generally considered a neurotoxin, may more potently cause neuronal damage indirectly by activating microglia in AD.

Original languageEnglish (US)
Pages (from-to)3693-3706
Number of pages14
JournalJournal of Biological Chemistry
Volume286
Issue number5
DOIs
StatePublished - Feb 4 2011

Fingerprint

Amyloidogenic Proteins
Microglia
Oligomers
Amyloid
Chemical activation
Alzheimer Disease
Nitric Oxide
Serum Amyloid A Protein
Scavenger Receptors
Doxycycline
Potassium Channels
Amyloid Plaques
Neurotoxins
p38 Mitogen-Activated Protein Kinases
Nitric Oxide Synthase Type II
Neurons
Brain

ASJC Scopus subject areas

  • Biochemistry
  • Cell Biology
  • Molecular Biology
  • Medicine(all)

Cite this

@article{1368d7ab7dce4f3797ca365455ee812a,
title = "Amyloid-β protein oligomer at low nanomolar concentrations activates microglia and induces microglial neurotoxicity",
abstract = "Neuroinflammation and associated neuronal dysfunction mediated by activated microglia play an important role in the pathogenesis of Alzheimer disease (AD). Microglia are activated by aggregated forms of amyloid-β protein (Aβ), usually demonstrated in vitro by stimulating microglia with micromolar concentrations of fibrillar Aβ, a major component of amyloid plaques in AD brains. Here we report that amyloid-β oligomer (AβO), at 5-50 nM, induces a unique pattern of microglia activation that requires the activity of the scavenger receptor A and the Ca2+-activated potassium channel KCa3.1. AβO treatment induced an activated morphological and biochemical profile of microglia, including activation of p38 MAPK and nuclear factor κB. Interestingly, although increasing nitric oxide (NO) production, AβO did not increase several proinflammatory mediators commonly induced by lipopolyliposacharides or fibrillar Aβ, suggesting that AβO stimulates both common and divergent pathways of microglia activation. AβO at low nanomolar concentrations, although not neurotoxic, induced indirect, microglia-mediated damage to neurons in dissociated cultures and in organotypic hippocampal slices. The indirect neurotoxicity was prevented by (i) doxycycline, an inhibitor of microglia activation; (ii) TRAM-34, a selective KCa3.1 blocker; and (iii) two inhibitors of inducible NO synthase, indicating that KCa3.1 activity and excessive NO release are required for AβO-induced microglial neurotoxicity. Our results suggest that AβO, generally considered a neurotoxin, may more potently cause neuronal damage indirectly by activating microglia in AD.",
author = "Izumi Maezawa and Zimin, {Pavel I.} and Heike Wulff and Lee-Way Jin",
year = "2011",
month = "2",
day = "4",
doi = "10.1074/jbc.M110.135244",
language = "English (US)",
volume = "286",
pages = "3693--3706",
journal = "Journal of Biological Chemistry",
issn = "0021-9258",
publisher = "American Society for Biochemistry and Molecular Biology Inc.",
number = "5",

}

TY - JOUR

T1 - Amyloid-β protein oligomer at low nanomolar concentrations activates microglia and induces microglial neurotoxicity

AU - Maezawa, Izumi

AU - Zimin, Pavel I.

AU - Wulff, Heike

AU - Jin, Lee-Way

PY - 2011/2/4

Y1 - 2011/2/4

N2 - Neuroinflammation and associated neuronal dysfunction mediated by activated microglia play an important role in the pathogenesis of Alzheimer disease (AD). Microglia are activated by aggregated forms of amyloid-β protein (Aβ), usually demonstrated in vitro by stimulating microglia with micromolar concentrations of fibrillar Aβ, a major component of amyloid plaques in AD brains. Here we report that amyloid-β oligomer (AβO), at 5-50 nM, induces a unique pattern of microglia activation that requires the activity of the scavenger receptor A and the Ca2+-activated potassium channel KCa3.1. AβO treatment induced an activated morphological and biochemical profile of microglia, including activation of p38 MAPK and nuclear factor κB. Interestingly, although increasing nitric oxide (NO) production, AβO did not increase several proinflammatory mediators commonly induced by lipopolyliposacharides or fibrillar Aβ, suggesting that AβO stimulates both common and divergent pathways of microglia activation. AβO at low nanomolar concentrations, although not neurotoxic, induced indirect, microglia-mediated damage to neurons in dissociated cultures and in organotypic hippocampal slices. The indirect neurotoxicity was prevented by (i) doxycycline, an inhibitor of microglia activation; (ii) TRAM-34, a selective KCa3.1 blocker; and (iii) two inhibitors of inducible NO synthase, indicating that KCa3.1 activity and excessive NO release are required for AβO-induced microglial neurotoxicity. Our results suggest that AβO, generally considered a neurotoxin, may more potently cause neuronal damage indirectly by activating microglia in AD.

AB - Neuroinflammation and associated neuronal dysfunction mediated by activated microglia play an important role in the pathogenesis of Alzheimer disease (AD). Microglia are activated by aggregated forms of amyloid-β protein (Aβ), usually demonstrated in vitro by stimulating microglia with micromolar concentrations of fibrillar Aβ, a major component of amyloid plaques in AD brains. Here we report that amyloid-β oligomer (AβO), at 5-50 nM, induces a unique pattern of microglia activation that requires the activity of the scavenger receptor A and the Ca2+-activated potassium channel KCa3.1. AβO treatment induced an activated morphological and biochemical profile of microglia, including activation of p38 MAPK and nuclear factor κB. Interestingly, although increasing nitric oxide (NO) production, AβO did not increase several proinflammatory mediators commonly induced by lipopolyliposacharides or fibrillar Aβ, suggesting that AβO stimulates both common and divergent pathways of microglia activation. AβO at low nanomolar concentrations, although not neurotoxic, induced indirect, microglia-mediated damage to neurons in dissociated cultures and in organotypic hippocampal slices. The indirect neurotoxicity was prevented by (i) doxycycline, an inhibitor of microglia activation; (ii) TRAM-34, a selective KCa3.1 blocker; and (iii) two inhibitors of inducible NO synthase, indicating that KCa3.1 activity and excessive NO release are required for AβO-induced microglial neurotoxicity. Our results suggest that AβO, generally considered a neurotoxin, may more potently cause neuronal damage indirectly by activating microglia in AD.

UR - http://www.scopus.com/inward/record.url?scp=79952810857&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=79952810857&partnerID=8YFLogxK

U2 - 10.1074/jbc.M110.135244

DO - 10.1074/jbc.M110.135244

M3 - Article

C2 - 20971854

AN - SCOPUS:79952810857

VL - 286

SP - 3693

EP - 3706

JO - Journal of Biological Chemistry

JF - Journal of Biological Chemistry

SN - 0021-9258

IS - 5

ER -