AMPK modulation ameliorates dominant disease phenotypes of CTRP5 variant in retinal degeneration

Kiyoharu J. Miyagishima, Ruchi Sharma, Malika Nimmagadda, Katharina Clore-Gronenborn, Zoya Qureshy, Davide Ortolan, Devika Bose, Mitra Farnoodian, Congxiao Zhang, Andrew Fausey, Yuri V. Sergeev, Mones Abu-Asab, Bokkyoo Jun, Khanh V. Do, Marie Audrey Kautzman Guerin, Jorgelina Calandria, Aman George, Bin Guan, Qin Wan, Rachel C. SharpCatherine Cukras, Paul A. Sieving, Robert B. Hufnagel, Nicolas G. Bazan, Kathleen Boesze-Battaglia, Sheldon Miller, Kapil Bharti

Research output: Contribution to journalArticlepeer-review

1 Scopus citations


Late-onset retinal degeneration (L-ORD) is an autosomal dominant disorder caused by a missense substitution in CTRP5. Distinctive clinical features include sub-retinal pigment epithelium (RPE) deposits, choroidal neovascularization, and RPE atrophy. In induced pluripotent stem cells-derived RPE from L-ORD patients (L-ORD-iRPE), we show that the dominant pathogenic CTRP5 variant leads to reduced CTRP5 secretion. In silico modeling suggests lower binding of mutant CTRP5 to adiponectin receptor 1 (ADIPOR1). Downstream of ADIPOR1 sustained activation of AMPK renders it insensitive to changes in AMP/ATP ratio resulting in defective lipid metabolism, reduced Neuroprotectin D1(NPD1) secretion, lower mitochondrial respiration, and reduced ATP production. These metabolic defects result in accumulation of sub-RPE deposits and leave L-ORD-iRPE susceptible to dedifferentiation. Gene augmentation of L-ORD-iRPE with WT CTRP5 or modulation of AMPK, by metformin, re-sensitize L-ORD-iRPE to changes in cellular energy status alleviating the disease cellular phenotypes. Our data suggests a mechanism for the dominant behavior of CTRP5 mutation and provides potential treatment strategies for L-ORD patients.

Original languageEnglish (US)
Article number1360
JournalCommunications Biology
Issue number1
StatePublished - Dec 2021
Externally publishedYes

ASJC Scopus subject areas

  • Medicine (miscellaneous)
  • Biochemistry, Genetics and Molecular Biology(all)
  • Agricultural and Biological Sciences(all)


Dive into the research topics of 'AMPK modulation ameliorates dominant disease phenotypes of CTRP5 variant in retinal degeneration'. Together they form a unique fingerprint.

Cite this