Amino acid residues Gln4020 and Lys4021 of the ryanodine receptor type 1 are required for activation by 4-chloro-m-cresol

James D. Fessenden, Wei Feng, Isaac N Pessah, Paul D. Allen

Research output: Contribution to journalArticle

23 Citations (Scopus)

Abstract

The ryanodine receptor type 1 (RyR1) and type 2 (RyR2), but not type 3 (RyR3), are efficiently activated by 4-chloro-m-cresol (4-CmC). We previously showed that a 173-amino acid segment of RyR1 (residues 4007-4180) is required for channel activation by 4-CmC (Fessenden, J. D., Perez, C. F., Goth, S., Pessah, I. N., and Allen, P. D. (2003) J. Biol. Chem. 278, 28727-28735). In the present study, we used site-directed mutagenesis to identify individual amino acid(s) within this region that mediate 4-CmC activation. In RyR1, substitution of 11 amino acids conserved between RyR1 and RyR2, but divergent in RyR3, with their RyR3 counterparts reduced 4-CmC sensitivity to the same degree as substitution of the entire 173-amino acid segment. Further analysis of various RyR1 mutants containing successively smaller numbers of these mutations identified 2 amino acid residues (Gln4020 and Lys4021) that, when mutated to their RyR3 counterparts (Leu3873 and Gln 3874), abolished 4-CmC activation of RyR1. Mutation of either of these residues alone did not abolish 4-CmC sensitivity, although Q4020L partially reduced 4-CmC-induced Ca2+ transients. In addition, mutation of the corresponding residues in RyR3 to their RyR1 counterparts (L3873Q/Q3874K) imparted 4-CmC sensitivity to RyR3. Recordings of single RyR1 channels indicated that 4-CmC applied to either the luminal or cytoplasmic side activated the channel with equal potency. Secondary structure modeling in the vicinity of the Gln4020-Lys4021 dipeptide suggests that the region contains a surface-exposed region adjacent to a hydrophobic segment, indicating that both hydrophilic and hydrophobic regions of RyR1 are necessary for 4-CmC binding to the channel and/or to translate allosteric 4-CmC binding into channel activation.

Original languageEnglish (US)
Pages (from-to)21022-21031
Number of pages10
JournalJournal of Biological Chemistry
Volume281
Issue number30
DOIs
StatePublished - Jul 28 2006

Fingerprint

Ryanodine Receptor Calcium Release Channel
Chemical activation
Amino Acids
4-cresol
Mutation
Substitution reactions
Mutagenesis
Dipeptides
Amino Acid Substitution

ASJC Scopus subject areas

  • Biochemistry

Cite this

Amino acid residues Gln4020 and Lys4021 of the ryanodine receptor type 1 are required for activation by 4-chloro-m-cresol. / Fessenden, James D.; Feng, Wei; Pessah, Isaac N; Allen, Paul D.

In: Journal of Biological Chemistry, Vol. 281, No. 30, 28.07.2006, p. 21022-21031.

Research output: Contribution to journalArticle

@article{d02dcce7cff74886aac31719f867d24f,
title = "Amino acid residues Gln4020 and Lys4021 of the ryanodine receptor type 1 are required for activation by 4-chloro-m-cresol",
abstract = "The ryanodine receptor type 1 (RyR1) and type 2 (RyR2), but not type 3 (RyR3), are efficiently activated by 4-chloro-m-cresol (4-CmC). We previously showed that a 173-amino acid segment of RyR1 (residues 4007-4180) is required for channel activation by 4-CmC (Fessenden, J. D., Perez, C. F., Goth, S., Pessah, I. N., and Allen, P. D. (2003) J. Biol. Chem. 278, 28727-28735). In the present study, we used site-directed mutagenesis to identify individual amino acid(s) within this region that mediate 4-CmC activation. In RyR1, substitution of 11 amino acids conserved between RyR1 and RyR2, but divergent in RyR3, with their RyR3 counterparts reduced 4-CmC sensitivity to the same degree as substitution of the entire 173-amino acid segment. Further analysis of various RyR1 mutants containing successively smaller numbers of these mutations identified 2 amino acid residues (Gln4020 and Lys4021) that, when mutated to their RyR3 counterparts (Leu3873 and Gln 3874), abolished 4-CmC activation of RyR1. Mutation of either of these residues alone did not abolish 4-CmC sensitivity, although Q4020L partially reduced 4-CmC-induced Ca2+ transients. In addition, mutation of the corresponding residues in RyR3 to their RyR1 counterparts (L3873Q/Q3874K) imparted 4-CmC sensitivity to RyR3. Recordings of single RyR1 channels indicated that 4-CmC applied to either the luminal or cytoplasmic side activated the channel with equal potency. Secondary structure modeling in the vicinity of the Gln4020-Lys4021 dipeptide suggests that the region contains a surface-exposed region adjacent to a hydrophobic segment, indicating that both hydrophilic and hydrophobic regions of RyR1 are necessary for 4-CmC binding to the channel and/or to translate allosteric 4-CmC binding into channel activation.",
author = "Fessenden, {James D.} and Wei Feng and Pessah, {Isaac N} and Allen, {Paul D.}",
year = "2006",
month = "7",
day = "28",
doi = "10.1074/jbc.M600670200",
language = "English (US)",
volume = "281",
pages = "21022--21031",
journal = "Journal of Biological Chemistry",
issn = "0021-9258",
publisher = "American Society for Biochemistry and Molecular Biology Inc.",
number = "30",

}

TY - JOUR

T1 - Amino acid residues Gln4020 and Lys4021 of the ryanodine receptor type 1 are required for activation by 4-chloro-m-cresol

AU - Fessenden, James D.

AU - Feng, Wei

AU - Pessah, Isaac N

AU - Allen, Paul D.

PY - 2006/7/28

Y1 - 2006/7/28

N2 - The ryanodine receptor type 1 (RyR1) and type 2 (RyR2), but not type 3 (RyR3), are efficiently activated by 4-chloro-m-cresol (4-CmC). We previously showed that a 173-amino acid segment of RyR1 (residues 4007-4180) is required for channel activation by 4-CmC (Fessenden, J. D., Perez, C. F., Goth, S., Pessah, I. N., and Allen, P. D. (2003) J. Biol. Chem. 278, 28727-28735). In the present study, we used site-directed mutagenesis to identify individual amino acid(s) within this region that mediate 4-CmC activation. In RyR1, substitution of 11 amino acids conserved between RyR1 and RyR2, but divergent in RyR3, with their RyR3 counterparts reduced 4-CmC sensitivity to the same degree as substitution of the entire 173-amino acid segment. Further analysis of various RyR1 mutants containing successively smaller numbers of these mutations identified 2 amino acid residues (Gln4020 and Lys4021) that, when mutated to their RyR3 counterparts (Leu3873 and Gln 3874), abolished 4-CmC activation of RyR1. Mutation of either of these residues alone did not abolish 4-CmC sensitivity, although Q4020L partially reduced 4-CmC-induced Ca2+ transients. In addition, mutation of the corresponding residues in RyR3 to their RyR1 counterparts (L3873Q/Q3874K) imparted 4-CmC sensitivity to RyR3. Recordings of single RyR1 channels indicated that 4-CmC applied to either the luminal or cytoplasmic side activated the channel with equal potency. Secondary structure modeling in the vicinity of the Gln4020-Lys4021 dipeptide suggests that the region contains a surface-exposed region adjacent to a hydrophobic segment, indicating that both hydrophilic and hydrophobic regions of RyR1 are necessary for 4-CmC binding to the channel and/or to translate allosteric 4-CmC binding into channel activation.

AB - The ryanodine receptor type 1 (RyR1) and type 2 (RyR2), but not type 3 (RyR3), are efficiently activated by 4-chloro-m-cresol (4-CmC). We previously showed that a 173-amino acid segment of RyR1 (residues 4007-4180) is required for channel activation by 4-CmC (Fessenden, J. D., Perez, C. F., Goth, S., Pessah, I. N., and Allen, P. D. (2003) J. Biol. Chem. 278, 28727-28735). In the present study, we used site-directed mutagenesis to identify individual amino acid(s) within this region that mediate 4-CmC activation. In RyR1, substitution of 11 amino acids conserved between RyR1 and RyR2, but divergent in RyR3, with their RyR3 counterparts reduced 4-CmC sensitivity to the same degree as substitution of the entire 173-amino acid segment. Further analysis of various RyR1 mutants containing successively smaller numbers of these mutations identified 2 amino acid residues (Gln4020 and Lys4021) that, when mutated to their RyR3 counterparts (Leu3873 and Gln 3874), abolished 4-CmC activation of RyR1. Mutation of either of these residues alone did not abolish 4-CmC sensitivity, although Q4020L partially reduced 4-CmC-induced Ca2+ transients. In addition, mutation of the corresponding residues in RyR3 to their RyR1 counterparts (L3873Q/Q3874K) imparted 4-CmC sensitivity to RyR3. Recordings of single RyR1 channels indicated that 4-CmC applied to either the luminal or cytoplasmic side activated the channel with equal potency. Secondary structure modeling in the vicinity of the Gln4020-Lys4021 dipeptide suggests that the region contains a surface-exposed region adjacent to a hydrophobic segment, indicating that both hydrophilic and hydrophobic regions of RyR1 are necessary for 4-CmC binding to the channel and/or to translate allosteric 4-CmC binding into channel activation.

UR - http://www.scopus.com/inward/record.url?scp=33746379605&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=33746379605&partnerID=8YFLogxK

U2 - 10.1074/jbc.M600670200

DO - 10.1074/jbc.M600670200

M3 - Article

C2 - 16737973

AN - SCOPUS:33746379605

VL - 281

SP - 21022

EP - 21031

JO - Journal of Biological Chemistry

JF - Journal of Biological Chemistry

SN - 0021-9258

IS - 30

ER -