TY - JOUR
T1 - Alkylator-Induced and Patient-Derived Xenograft Mouse Models of Therapy-Related Myeloid Neoplasms Model Clinical Disease and Suggest the Presence of Multiple Cell Subpopulations with Leukemia Stem Cell Activity
AU - Jonas, Brian
AU - Johnson, Carl
AU - Gratzinger, Dita
AU - Majeti, Ravindra
PY - 2016
Y1 - 2016
N2 - Acute myeloid leukemia (AML) is a heterogeneous group of aggressive bone marrow cancers arising from transformed hematopoietic stem and progenitor cells (HSPC). Therapy-related AML and MDS (t-AML/MDS) comprise a subset of AML cases occurring after exposure to alkylating chemotherapy and/or radiation and are associated with a very poor prognosis. Less is known about the pathogenesis and disease-initiating/leukemia stem cell (LSC) subpopulations of t-AML/MDS compared to their de novo counterparts. Here, we report the development of mouse models of t-AML/MDS. First, we modeled alkylator-induced t-AML/MDS by exposing wild type adult mice to N-ethyl-N-nitrosurea (ENU), resulting in several models of AML and MDS that have clinical and pathologic characteristics consistent with human t-AML/MDS including cytopenia, myelodysplasia, and shortened overall survival. These models were limited by their inability to transplant clinically aggressive disease. Second, we established three patient-derived xenograft models of human t-AML. These models led to rapidly fatal disease in recipient immunodeficient xenografted mice. LSC activity was identified in multiple HSPC subpopulations suggesting there is no canonical LSC immunophenotype in human t-AML. Overall, we report several new t-AML/MDS mouse models that could potentially be used to further define disease pathogenesis and test novel therapeutics.
AB - Acute myeloid leukemia (AML) is a heterogeneous group of aggressive bone marrow cancers arising from transformed hematopoietic stem and progenitor cells (HSPC). Therapy-related AML and MDS (t-AML/MDS) comprise a subset of AML cases occurring after exposure to alkylating chemotherapy and/or radiation and are associated with a very poor prognosis. Less is known about the pathogenesis and disease-initiating/leukemia stem cell (LSC) subpopulations of t-AML/MDS compared to their de novo counterparts. Here, we report the development of mouse models of t-AML/MDS. First, we modeled alkylator-induced t-AML/MDS by exposing wild type adult mice to N-ethyl-N-nitrosurea (ENU), resulting in several models of AML and MDS that have clinical and pathologic characteristics consistent with human t-AML/MDS including cytopenia, myelodysplasia, and shortened overall survival. These models were limited by their inability to transplant clinically aggressive disease. Second, we established three patient-derived xenograft models of human t-AML. These models led to rapidly fatal disease in recipient immunodeficient xenografted mice. LSC activity was identified in multiple HSPC subpopulations suggesting there is no canonical LSC immunophenotype in human t-AML. Overall, we report several new t-AML/MDS mouse models that could potentially be used to further define disease pathogenesis and test novel therapeutics.
UR - http://www.scopus.com/inward/record.url?scp=85026294429&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85026294429&partnerID=8YFLogxK
U2 - 10.1371/journal.pone.0159189
DO - 10.1371/journal.pone.0159189
M3 - Article
C2 - 27428079
AN - SCOPUS:85026294429
VL - 11
SP - e0159189
JO - PLoS One
JF - PLoS One
SN - 1932-6203
IS - 7
ER -