Adaptive evolution of mammalian aromatases: Lessons from suiformes

Alan J Conley, C. J. Corbin, A. L. Hughes

Research output: Contribution to journalArticle

8 Citations (Scopus)

Abstract

Estrogen synthesis evolved in chordates to control reproduction. The terminal enzyme in the cascade directly responsible for estrogen synthesis is aromatase cytochrome P450 (P450arom) encoded by the CYP19 gene. Mammals typically have a single CYP19 gene but pigs, peccaries and other Suiformes have two or more resulting from duplication in a common ancestor. Duplication of CYP genes in the steroid synthetic cascade has occurred for only one other enzyme, also terminal, 11b-hydroxylase P450 (P450c11). P450arom and P450c11 share common substrates and even physiological functions as possible remnants from a common P450 progenitor, perhaps an ancestral P450arom, which is supported by phylogenetic analysis. Conserved tissue-specific expression patterns of P450arom paralogs in placenta and gonads of pigs and peccaries suggest how functional adaptation may have proceeded divergently and influenced adopted reproductive strategies including ovulation rate and litter size. Data suggest that the porcine placental paralog evolved catalytically to protect female conceptuses from testosterone produced by male siblings; the gonadal paralog to synthesize a novel, nonaromatizable testosterone metabolite (1OH-testosterone) that may increase ovulation rate. This would represent a coevolution facilitating litter bearing as pigs diverged from peccaries. Evidence of convergence between the peccary CYP19 genes and lower tissue expression may therefore represent initiation of loss of the functional paralogs. Studies on the Suiforme aromatases provide insights into the evolution of the steroidogenic cascade and metabolic pathways in general, how it translates into physiological adaptations (altered reproductive strategies for instance), and how duplicated genes become stabilized or disappear from genomes.

Original languageEnglish (US)
Pages (from-to)346-357
Number of pages12
JournalJournal of Experimental Zoology Part A: Ecological Genetics and Physiology
Volume311
Issue number5
DOIs
StatePublished - Jun 1 2009

Fingerprint

Tayassuidae
Artiodactyla
Aromatase
testosterone
Swine
swine
gene
pig
Testosterone
estrogens
ovulation
Ovulation
genes
reproductive strategy
Genes
Estrogens
conceptus
synthesis
Chordata
enzyme

ASJC Scopus subject areas

  • Animal Science and Zoology
  • Ecology, Evolution, Behavior and Systematics
  • Genetics
  • Physiology
  • Molecular Biology

Cite this

Adaptive evolution of mammalian aromatases : Lessons from suiformes. / Conley, Alan J; Corbin, C. J.; Hughes, A. L.

In: Journal of Experimental Zoology Part A: Ecological Genetics and Physiology, Vol. 311, No. 5, 01.06.2009, p. 346-357.

Research output: Contribution to journalArticle

@article{6fd5c331de1841a7af65a16abeffaf86,
title = "Adaptive evolution of mammalian aromatases: Lessons from suiformes",
abstract = "Estrogen synthesis evolved in chordates to control reproduction. The terminal enzyme in the cascade directly responsible for estrogen synthesis is aromatase cytochrome P450 (P450arom) encoded by the CYP19 gene. Mammals typically have a single CYP19 gene but pigs, peccaries and other Suiformes have two or more resulting from duplication in a common ancestor. Duplication of CYP genes in the steroid synthetic cascade has occurred for only one other enzyme, also terminal, 11b-hydroxylase P450 (P450c11). P450arom and P450c11 share common substrates and even physiological functions as possible remnants from a common P450 progenitor, perhaps an ancestral P450arom, which is supported by phylogenetic analysis. Conserved tissue-specific expression patterns of P450arom paralogs in placenta and gonads of pigs and peccaries suggest how functional adaptation may have proceeded divergently and influenced adopted reproductive strategies including ovulation rate and litter size. Data suggest that the porcine placental paralog evolved catalytically to protect female conceptuses from testosterone produced by male siblings; the gonadal paralog to synthesize a novel, nonaromatizable testosterone metabolite (1OH-testosterone) that may increase ovulation rate. This would represent a coevolution facilitating litter bearing as pigs diverged from peccaries. Evidence of convergence between the peccary CYP19 genes and lower tissue expression may therefore represent initiation of loss of the functional paralogs. Studies on the Suiforme aromatases provide insights into the evolution of the steroidogenic cascade and metabolic pathways in general, how it translates into physiological adaptations (altered reproductive strategies for instance), and how duplicated genes become stabilized or disappear from genomes.",
author = "Conley, {Alan J} and Corbin, {C. J.} and Hughes, {A. L.}",
year = "2009",
month = "6",
day = "1",
doi = "10.1002/jez.451",
language = "English (US)",
volume = "311",
pages = "346--357",
journal = "Journal of Experimental Zoology Part A: Ecological Genetics and Physiology",
issn = "1932-5223",
publisher = "John Wiley and Sons Inc.",
number = "5",

}

TY - JOUR

T1 - Adaptive evolution of mammalian aromatases

T2 - Lessons from suiformes

AU - Conley, Alan J

AU - Corbin, C. J.

AU - Hughes, A. L.

PY - 2009/6/1

Y1 - 2009/6/1

N2 - Estrogen synthesis evolved in chordates to control reproduction. The terminal enzyme in the cascade directly responsible for estrogen synthesis is aromatase cytochrome P450 (P450arom) encoded by the CYP19 gene. Mammals typically have a single CYP19 gene but pigs, peccaries and other Suiformes have two or more resulting from duplication in a common ancestor. Duplication of CYP genes in the steroid synthetic cascade has occurred for only one other enzyme, also terminal, 11b-hydroxylase P450 (P450c11). P450arom and P450c11 share common substrates and even physiological functions as possible remnants from a common P450 progenitor, perhaps an ancestral P450arom, which is supported by phylogenetic analysis. Conserved tissue-specific expression patterns of P450arom paralogs in placenta and gonads of pigs and peccaries suggest how functional adaptation may have proceeded divergently and influenced adopted reproductive strategies including ovulation rate and litter size. Data suggest that the porcine placental paralog evolved catalytically to protect female conceptuses from testosterone produced by male siblings; the gonadal paralog to synthesize a novel, nonaromatizable testosterone metabolite (1OH-testosterone) that may increase ovulation rate. This would represent a coevolution facilitating litter bearing as pigs diverged from peccaries. Evidence of convergence between the peccary CYP19 genes and lower tissue expression may therefore represent initiation of loss of the functional paralogs. Studies on the Suiforme aromatases provide insights into the evolution of the steroidogenic cascade and metabolic pathways in general, how it translates into physiological adaptations (altered reproductive strategies for instance), and how duplicated genes become stabilized or disappear from genomes.

AB - Estrogen synthesis evolved in chordates to control reproduction. The terminal enzyme in the cascade directly responsible for estrogen synthesis is aromatase cytochrome P450 (P450arom) encoded by the CYP19 gene. Mammals typically have a single CYP19 gene but pigs, peccaries and other Suiformes have two or more resulting from duplication in a common ancestor. Duplication of CYP genes in the steroid synthetic cascade has occurred for only one other enzyme, also terminal, 11b-hydroxylase P450 (P450c11). P450arom and P450c11 share common substrates and even physiological functions as possible remnants from a common P450 progenitor, perhaps an ancestral P450arom, which is supported by phylogenetic analysis. Conserved tissue-specific expression patterns of P450arom paralogs in placenta and gonads of pigs and peccaries suggest how functional adaptation may have proceeded divergently and influenced adopted reproductive strategies including ovulation rate and litter size. Data suggest that the porcine placental paralog evolved catalytically to protect female conceptuses from testosterone produced by male siblings; the gonadal paralog to synthesize a novel, nonaromatizable testosterone metabolite (1OH-testosterone) that may increase ovulation rate. This would represent a coevolution facilitating litter bearing as pigs diverged from peccaries. Evidence of convergence between the peccary CYP19 genes and lower tissue expression may therefore represent initiation of loss of the functional paralogs. Studies on the Suiforme aromatases provide insights into the evolution of the steroidogenic cascade and metabolic pathways in general, how it translates into physiological adaptations (altered reproductive strategies for instance), and how duplicated genes become stabilized or disappear from genomes.

UR - http://www.scopus.com/inward/record.url?scp=67650003071&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=67650003071&partnerID=8YFLogxK

U2 - 10.1002/jez.451

DO - 10.1002/jez.451

M3 - Article

C2 - 18381772

AN - SCOPUS:67650003071

VL - 311

SP - 346

EP - 357

JO - Journal of Experimental Zoology Part A: Ecological Genetics and Physiology

JF - Journal of Experimental Zoology Part A: Ecological Genetics and Physiology

SN - 1932-5223

IS - 5

ER -