Activated Src oncogene phosphorylates R-Ras and suppresses integrin activity

June X Zou, Yanqiu Liu, Elena B. Pasquale, Erkki Ruoslahti

Research output: Contribution to journalArticlepeer-review

52 Scopus citations


One of the prominent effects of the Src kinase is to reduce cell adhesion. The small GTPase, R-Ras, affects cell adhesion by maintaining integrin activity, and the ability of R-Ras to do so can be regulated by phosphorylation of a tyrosine residue located in its effector domain by an Eph receptor kinase (Zou, J. X., Wang, B., Kalo, M. S., Zisch, A. H., Pasquale, E. B., and Ruoslahti, E. (1999) Proc. Natl. Acad. Sci. U. S. A. 96, 13813-13818). Here we show that Src regulates cell adhesion through R-Ras and integrins. Reduced substrate attachment of 293T cells transfected with the cDNA for an activated form of Src (v-Src) was accompanied by phosphorylation of endogenous R-Ras. v-Src also phosphorylated R-Ras in vitro. An activated form of Src similar to one that has been found in human cancers, Src527, shared with v-Src the ability to phosphorylate R-Ras. Stronger R-Ras phosphorylation was seen in Madin-Darby canine kidney cells cells transformed with temperature-sensitive v-Src at the permissive temperature than at the non-permissive temperature, and R-Ras and Src co-immunoprecipitated at the permissive temperature. Mutation analysis showed that the Src phosphorylation site in R-Ras was tyrosine 66, the position critical to the ability of R-Ras to support integrin activity. Finally, activated R-Ras in which tyrosine 66 is mutated to phenylalanine rendered cells partially resistant to the effects of Src on cell adhesion. Regulation of cell adhesion by Src through R-Ras may be at least partially responsible for the reduced adhesion and the resulting increased invasiveness of Src-transformed cells.

Original languageEnglish (US)
Pages (from-to)1824-1827
Number of pages4
JournalJournal of Biological Chemistry
Issue number3
StatePublished - Jan 18 2002

ASJC Scopus subject areas

  • Biochemistry


Dive into the research topics of 'Activated Src oncogene phosphorylates R-Ras and suppresses integrin activity'. Together they form a unique fingerprint.

Cite this