Acoustic response of compliable microvessels containing ultrasound contrast agents

Shengping Qin, Katherine W. Ferrara

Research output: Contribution to journalArticle

107 Citations (Scopus)

Abstract

The existing models of the dynamics of ultrasound contrast agents (UCAs) have largely been focused on an UCA surrounded by an infinite liquid. Preliminary investigations of a microbubble's oscillation in a rigid tube have been performed using linear perturbation, under the assumption that the tube diameter is significantly larger than the UCA diameter. In the potential application of drug and gene delivery, it may be desirable to fragment the agent shell within small blood vessels and in some cases to rupture the vessel wall, releasing drugs and genes at the site. The effect of a compliant small blood vessel on the UCA's oscillation and the microvessel's acoustic response are unknown. The aim of this work is to propose a lumped-parameter model to study the interaction of a microbubble oscillation and compliable microvessels. Numerical results demonstrate that in the presence of UCAs, the transmural pressure through the blood vessel substantially increases and thus the vascular permeability is predicted to be enhanced. For a microbubble within an 8 to 40 νm vessel with a peak negative pressure of 0.1 MPa and a centre frequency of 1 MHz, small changes in the microbubble oscillation frequency and maximum diameter are observed. When the ultrasound pressure increases, strong nonlinear oscillation occurs, with an increased circumferential stress on the vessel. For a compliable vessel with a diameter equal to or greater than 8 νm, 0.2 MPa PNP at 1 MHz is predicted to be sufficient for microbubble fragmentation regardless of the vessel diameter; however, for a rigid vessel 0.5 MPa PNP at 1 MHz may not be sufficient to fragment the bubbles. For a centre frequency of 1 MHz, a peak negative pressure of 0.5 MPa is predicted to be sufficient to exceed the stress threshold for vascular rupture in a small (diameter less than 15 νm) compliant vessel. As the vessel or surrounding tissue becomes more rigid, the UCA oscillation and vessel dilation decrease; however the circumferential stress is predicted to increase. Decreasing the vessel size or the centre frequency increases the circumferential stress. For the two frequencies considered in this work, the circumferential stress does not scale as the inverse of the square root of the acoustic frequency va as in the mechanical index, but rather has a stronger frequency dependence, 1/v a.

Original languageEnglish (US)
Article number001
Pages (from-to)5065-5088
Number of pages24
JournalPhysics in Medicine and Biology
Volume51
Issue number20
DOIs
StatePublished - Oct 21 2006

Fingerprint

Microbubbles
Microvessels
Acoustics
Contrast Media
vessels
Ultrasonics
Blood Vessels
acoustics
Blood vessels
Pressure
oscillations
Rupture
blood vessels
Genes
Capillary Permeability
Pharmaceutical Preparations
genes
Dilatation
drugs
fragments

ASJC Scopus subject areas

  • Biomedical Engineering
  • Physics and Astronomy (miscellaneous)
  • Radiology Nuclear Medicine and imaging
  • Radiological and Ultrasound Technology

Cite this

Acoustic response of compliable microvessels containing ultrasound contrast agents. / Qin, Shengping; Ferrara, Katherine W.

In: Physics in Medicine and Biology, Vol. 51, No. 20, 001, 21.10.2006, p. 5065-5088.

Research output: Contribution to journalArticle

Qin, Shengping ; Ferrara, Katherine W. / Acoustic response of compliable microvessels containing ultrasound contrast agents. In: Physics in Medicine and Biology. 2006 ; Vol. 51, No. 20. pp. 5065-5088.
@article{00e4986394194d4c8e39432d0ee9659a,
title = "Acoustic response of compliable microvessels containing ultrasound contrast agents",
abstract = "The existing models of the dynamics of ultrasound contrast agents (UCAs) have largely been focused on an UCA surrounded by an infinite liquid. Preliminary investigations of a microbubble's oscillation in a rigid tube have been performed using linear perturbation, under the assumption that the tube diameter is significantly larger than the UCA diameter. In the potential application of drug and gene delivery, it may be desirable to fragment the agent shell within small blood vessels and in some cases to rupture the vessel wall, releasing drugs and genes at the site. The effect of a compliant small blood vessel on the UCA's oscillation and the microvessel's acoustic response are unknown. The aim of this work is to propose a lumped-parameter model to study the interaction of a microbubble oscillation and compliable microvessels. Numerical results demonstrate that in the presence of UCAs, the transmural pressure through the blood vessel substantially increases and thus the vascular permeability is predicted to be enhanced. For a microbubble within an 8 to 40 νm vessel with a peak negative pressure of 0.1 MPa and a centre frequency of 1 MHz, small changes in the microbubble oscillation frequency and maximum diameter are observed. When the ultrasound pressure increases, strong nonlinear oscillation occurs, with an increased circumferential stress on the vessel. For a compliable vessel with a diameter equal to or greater than 8 νm, 0.2 MPa PNP at 1 MHz is predicted to be sufficient for microbubble fragmentation regardless of the vessel diameter; however, for a rigid vessel 0.5 MPa PNP at 1 MHz may not be sufficient to fragment the bubbles. For a centre frequency of 1 MHz, a peak negative pressure of 0.5 MPa is predicted to be sufficient to exceed the stress threshold for vascular rupture in a small (diameter less than 15 νm) compliant vessel. As the vessel or surrounding tissue becomes more rigid, the UCA oscillation and vessel dilation decrease; however the circumferential stress is predicted to increase. Decreasing the vessel size or the centre frequency increases the circumferential stress. For the two frequencies considered in this work, the circumferential stress does not scale as the inverse of the square root of the acoustic frequency va as in the mechanical index, but rather has a stronger frequency dependence, 1/v a.",
author = "Shengping Qin and Ferrara, {Katherine W.}",
year = "2006",
month = "10",
day = "21",
doi = "10.1088/0031-9155/51/20/001",
language = "English (US)",
volume = "51",
pages = "5065--5088",
journal = "Physics in Medicine and Biology",
issn = "0031-9155",
publisher = "IOP Publishing Ltd.",
number = "20",

}

TY - JOUR

T1 - Acoustic response of compliable microvessels containing ultrasound contrast agents

AU - Qin, Shengping

AU - Ferrara, Katherine W.

PY - 2006/10/21

Y1 - 2006/10/21

N2 - The existing models of the dynamics of ultrasound contrast agents (UCAs) have largely been focused on an UCA surrounded by an infinite liquid. Preliminary investigations of a microbubble's oscillation in a rigid tube have been performed using linear perturbation, under the assumption that the tube diameter is significantly larger than the UCA diameter. In the potential application of drug and gene delivery, it may be desirable to fragment the agent shell within small blood vessels and in some cases to rupture the vessel wall, releasing drugs and genes at the site. The effect of a compliant small blood vessel on the UCA's oscillation and the microvessel's acoustic response are unknown. The aim of this work is to propose a lumped-parameter model to study the interaction of a microbubble oscillation and compliable microvessels. Numerical results demonstrate that in the presence of UCAs, the transmural pressure through the blood vessel substantially increases and thus the vascular permeability is predicted to be enhanced. For a microbubble within an 8 to 40 νm vessel with a peak negative pressure of 0.1 MPa and a centre frequency of 1 MHz, small changes in the microbubble oscillation frequency and maximum diameter are observed. When the ultrasound pressure increases, strong nonlinear oscillation occurs, with an increased circumferential stress on the vessel. For a compliable vessel with a diameter equal to or greater than 8 νm, 0.2 MPa PNP at 1 MHz is predicted to be sufficient for microbubble fragmentation regardless of the vessel diameter; however, for a rigid vessel 0.5 MPa PNP at 1 MHz may not be sufficient to fragment the bubbles. For a centre frequency of 1 MHz, a peak negative pressure of 0.5 MPa is predicted to be sufficient to exceed the stress threshold for vascular rupture in a small (diameter less than 15 νm) compliant vessel. As the vessel or surrounding tissue becomes more rigid, the UCA oscillation and vessel dilation decrease; however the circumferential stress is predicted to increase. Decreasing the vessel size or the centre frequency increases the circumferential stress. For the two frequencies considered in this work, the circumferential stress does not scale as the inverse of the square root of the acoustic frequency va as in the mechanical index, but rather has a stronger frequency dependence, 1/v a.

AB - The existing models of the dynamics of ultrasound contrast agents (UCAs) have largely been focused on an UCA surrounded by an infinite liquid. Preliminary investigations of a microbubble's oscillation in a rigid tube have been performed using linear perturbation, under the assumption that the tube diameter is significantly larger than the UCA diameter. In the potential application of drug and gene delivery, it may be desirable to fragment the agent shell within small blood vessels and in some cases to rupture the vessel wall, releasing drugs and genes at the site. The effect of a compliant small blood vessel on the UCA's oscillation and the microvessel's acoustic response are unknown. The aim of this work is to propose a lumped-parameter model to study the interaction of a microbubble oscillation and compliable microvessels. Numerical results demonstrate that in the presence of UCAs, the transmural pressure through the blood vessel substantially increases and thus the vascular permeability is predicted to be enhanced. For a microbubble within an 8 to 40 νm vessel with a peak negative pressure of 0.1 MPa and a centre frequency of 1 MHz, small changes in the microbubble oscillation frequency and maximum diameter are observed. When the ultrasound pressure increases, strong nonlinear oscillation occurs, with an increased circumferential stress on the vessel. For a compliable vessel with a diameter equal to or greater than 8 νm, 0.2 MPa PNP at 1 MHz is predicted to be sufficient for microbubble fragmentation regardless of the vessel diameter; however, for a rigid vessel 0.5 MPa PNP at 1 MHz may not be sufficient to fragment the bubbles. For a centre frequency of 1 MHz, a peak negative pressure of 0.5 MPa is predicted to be sufficient to exceed the stress threshold for vascular rupture in a small (diameter less than 15 νm) compliant vessel. As the vessel or surrounding tissue becomes more rigid, the UCA oscillation and vessel dilation decrease; however the circumferential stress is predicted to increase. Decreasing the vessel size or the centre frequency increases the circumferential stress. For the two frequencies considered in this work, the circumferential stress does not scale as the inverse of the square root of the acoustic frequency va as in the mechanical index, but rather has a stronger frequency dependence, 1/v a.

UR - http://www.scopus.com/inward/record.url?scp=33749605662&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=33749605662&partnerID=8YFLogxK

U2 - 10.1088/0031-9155/51/20/001

DO - 10.1088/0031-9155/51/20/001

M3 - Article

C2 - 17019026

AN - SCOPUS:33749605662

VL - 51

SP - 5065

EP - 5088

JO - Physics in Medicine and Biology

JF - Physics in Medicine and Biology

SN - 0031-9155

IS - 20

M1 - 001

ER -