Acetaldehyde stimulates FANCD2 monoubiquitination, H2AX phosphorylation, and BRCA1 phosphorylation in human cells in vitro: Implications for alcohol-related carcinogenesis

Cheryl Marietta, Larry H. Thompson, Jane E. Lamerdin, P. J. Brooks

Research output: Contribution to journalArticle

38 Scopus citations

Abstract

According to a recent IARC Working Group report, alcohol consumption is causally related to an increased risk of cancer of the upper aerodigestive tract, liver, colorectum, and female breast [R. Baan, K. Straif, Y. Grosse, B. Secretan, F. El Ghissassi, V. Bouvard, A. Altieri, V. Cogliano, Carcinogenicity of alcoholic beverages, Lancet Oncol. 8 (2007) 292-293]. Several lines of evidence indicate that acetaldehyde (AA), the first product of alcohol metabolism, plays a very important role in alcohol-related carcinogenesis, particularly in the esophagus. We previously proposed a model for alcohol-related carcinogenesis in which AA, generated from alcohol metabolism, reacts in cells to generate DNA lesions that form interstrand crosslinks (ICLs) [J.A. Theruvathu, P. Jaruga, R.G. Nath, M. Dizdaroglu, P.J. Brooks, Polyamines stimulate the formation of mutagenic 1,N2-propanodeoxyguanosine adducts from acetaldehyde, Nucleic Acids Res. 33 (2005) 3513-3520]. Since the Fanconi anemia-breast cancer associated (FANC-BRCA) DNA damage response network plays a crucial role in protecting cells against ICLs, in the present work we tested this hypothesis by exposing cells to AA and monitoring activation of this network. We found that AA exposure results in a concentration-dependent increase in FANCD2 monoubiquitination, which is dependent upon the FANC core complex. AA also stimulated BRCA1 phosphorylation at Ser1524 and increased the level of γH2AX, with both modifications occurring in a dose-dependent manner. However, AA did not detectably increase the levels of hyperphosphorylated RPA34, a marker of single-stranded DNA exposure at replication forks. These results provide the initial description of the AA-DNA damage response, which is qualitatively similar to the cellular response to mitomycin C, a known DNA crosslinking agent. We discuss the mechanistic implications of these results, as well as their possible relationship to alcohol-related carcinogenesis in different human tissues.

Original languageEnglish (US)
Pages (from-to)77-83
Number of pages7
JournalMutation Research - Fundamental and Molecular Mechanisms of Mutagenesis
Volume664
Issue number1-2
DOIs
StatePublished - May 12 2009
Externally publishedYes

Keywords

  • Alcohol
  • Breast cancer
  • Esophagus
  • Fanconi anemia

ASJC Scopus subject areas

  • Molecular Biology
  • Genetics
  • Health, Toxicology and Mutagenesis

Fingerprint Dive into the research topics of 'Acetaldehyde stimulates FANCD2 monoubiquitination, H2AX phosphorylation, and BRCA1 phosphorylation in human cells in vitro: Implications for alcohol-related carcinogenesis'. Together they form a unique fingerprint.

  • Cite this