TY - JOUR
T1 - A synthetic cell-penetrating dominant-negative ATF5 peptide exerts anticancer activity against a broad spectrum of treatment-resistant cancers
AU - Karpel-Massler, Georg
AU - Horst, Basil A.
AU - Shu, Chang
AU - Chau, Lily
AU - Tsujiuchi, Takashi
AU - Bruce, Jeffrey N.
AU - Canoll, Peter
AU - Greene, Lloyd A.
AU - Angelastro, James M
AU - Siegelin, Markus D.
PY - 2016/9/15
Y1 - 2016/9/15
N2 - Purpose: Despite significant progress in cancer research, many tumor entities still have an unfavorable prognosis. Activating transcription factor 5 (ATF5) is upregulated in various malignancies and promotes apoptotic resistance. We evaluated the efficacy and mechanisms of the first described synthetic cell-penetrating inhibitor of ATF5 function, CP-d/n-ATF5-S1. Experimental Design: Preclinical drug testing was performed in various treatment-resistant cancer cells and in vivo xenograft models. Results: CP-d/n-ATF5-S1 reduced the transcript levels of several known direct ATF5 targets. It depleted endogenous ATF5 and induced apoptosis across a broad panel of treatment-refractory cancer cell lines, sparing non-neoplastic cells. CP-d/n-ATF5-S1 promoted tumor cell apoptotic susceptibility in part by reducing expression of the deubiquitinase Usp9X and led to diminished levels of antiapoptotic Bcl-2 family members Mcl-1 and Bcl-2. In line with this, CP-d/n-ATF5-S1 synergistically enhanced tumor cell apoptosis induced by the BH3-mimetic ABT263 and the death ligand TRAIL. In vivo, CP-d/n-ATF5-S1 attenuated tumor growth as a single compound in glioblastoma, melanoma, prostate cancer, and triple receptor-negative breast cancer xenograft models. Finally, the combination treatment of CP-d/n-ATF5-S1 and ABT263 significantly reduced tumor growth in vivo more efficiently than each reagent on its own. Conclusions: Our data support the idea that CP-d/n-ATF5-S1, administered as a single reagent or in combination with other drugs, holds promise as an innovative, safe, and efficient antineoplastic agent against treatment-resistant cancers. Clin Cancer Res; 22(18); 4698-711.
AB - Purpose: Despite significant progress in cancer research, many tumor entities still have an unfavorable prognosis. Activating transcription factor 5 (ATF5) is upregulated in various malignancies and promotes apoptotic resistance. We evaluated the efficacy and mechanisms of the first described synthetic cell-penetrating inhibitor of ATF5 function, CP-d/n-ATF5-S1. Experimental Design: Preclinical drug testing was performed in various treatment-resistant cancer cells and in vivo xenograft models. Results: CP-d/n-ATF5-S1 reduced the transcript levels of several known direct ATF5 targets. It depleted endogenous ATF5 and induced apoptosis across a broad panel of treatment-refractory cancer cell lines, sparing non-neoplastic cells. CP-d/n-ATF5-S1 promoted tumor cell apoptotic susceptibility in part by reducing expression of the deubiquitinase Usp9X and led to diminished levels of antiapoptotic Bcl-2 family members Mcl-1 and Bcl-2. In line with this, CP-d/n-ATF5-S1 synergistically enhanced tumor cell apoptosis induced by the BH3-mimetic ABT263 and the death ligand TRAIL. In vivo, CP-d/n-ATF5-S1 attenuated tumor growth as a single compound in glioblastoma, melanoma, prostate cancer, and triple receptor-negative breast cancer xenograft models. Finally, the combination treatment of CP-d/n-ATF5-S1 and ABT263 significantly reduced tumor growth in vivo more efficiently than each reagent on its own. Conclusions: Our data support the idea that CP-d/n-ATF5-S1, administered as a single reagent or in combination with other drugs, holds promise as an innovative, safe, and efficient antineoplastic agent against treatment-resistant cancers. Clin Cancer Res; 22(18); 4698-711.
UR - http://www.scopus.com/inward/record.url?scp=84973599317&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84973599317&partnerID=8YFLogxK
U2 - 10.1158/1078-0432.CCR-15-2827
DO - 10.1158/1078-0432.CCR-15-2827
M3 - Article
C2 - 27126996
AN - SCOPUS:84973599317
VL - 22
SP - 4698
EP - 4711
JO - Clinical Cancer Research
JF - Clinical Cancer Research
SN - 1078-0432
IS - 18
ER -