A retroviral DNA vaccine vector

James M. Smith, Jose V Torres

Research output: Contribution to journalArticle

3 Scopus citations

Abstract

A versatile DNA vaccine (pdIV3) was constructed by replacing the integrase, vif, vpx, and vpr genes of a pathogenic simian immunodeficiency virus (SIV) molecular clone with a linker containing unique cloning sites. The 5′ long terminal repeat (LTR) is truncated and transcription is controlled by a cytomegalovirus (CMV) promoter. The construct expresses Gag and Env in vitro and noninfectious virus particles are produced from transfected cells. The ability of pdIV3 to promote cellular and humoral immune responses, along with the flexibility of the linker design to allow insertion of immunostimulatory genes in future constructs, makes this a useful base vector for immunization against primate lentiviruses. We present the construction of a retroviral plasmid designed to serve as a template for the development of safe and effective vaccines against primate immunodeficiency retroviruses. This vaccine component should facilitate the simultaneous induction of cellular and humoral immune responses that protect primates against infection with SIV and human immunodeficiency virus (HIV) and the development of acquired immune deficiency syndrome (AIDS). This plasmid could induce the appropriate immune response required to attack both cell-free and cell-associated viruses. The lack of infectivity, the inability to integrate, and the SIV origin make this construct a safe alternative to attenuated vaccines based on HIV. In addition, we intend to develop this construct as an immunotherapeutic approach to lower the viremia in AIDS patients.

Original languageEnglish (US)
Pages (from-to)339-348
Number of pages10
JournalViral Immunology
Volume14
Issue number4
StatePublished - 2001

ASJC Scopus subject areas

  • Immunology
  • Virology

Fingerprint Dive into the research topics of 'A retroviral DNA vaccine vector'. Together they form a unique fingerprint.

  • Cite this