A prototype PET scanner with DOI-encoding detectors

Yongfeng Yang, Yibao Wu, Jinyi Qi, Sara St. James, Huini Du, Purushottam A. Dokhale, Kanai S. Shah, Richard Farrell, Simon R Cherry

Research output: Contribution to journalArticlepeer-review

81 Scopus citations

Abstract

Detectors with depth-encoding allow a PET scanner to simultaneously achieve high sensitivity and high spatial resolution. Methods: A prototype PET scanner, consisting of depth-encoding detectors constructed by dual-ended readout of lutetium oxyorthosilicate (LSO) arrays with 2 position-sensitive avalanche photodiodes (PSAPDs), was developed. The scanner comprised 2 detector plates, each with 4 detector modules, and the LSO arrays consisted of 7 x 7 elements, with a crystal size of 0.9225 x 0.9225 x 20 mm and a pitch of 1.0 mm. The active area of the PSAPDs was 8 x 8 mm. The performance of individual detector modules was characterized. A line-source phantom and a hot-rod phantom were imaged on the prototype scanner in 2 different scanner configurations. The images were reconstructed using 20, 10, 5, 2, and 1 depth-of-interaction (DOI) bins to demonstrate the effects of DOI resolution on reconstructed image resolution and visual image quality. Results: The flood histograms measured from the sum of both PSAPD signals were only weakly depth-dependent, and excellent crystal identification was obtained at all depths. The flood histograms improved as the detector temperature decreased. DOI resolution and energy resolution improved significantly as the temperature decreased from 20°C to 10°C but improved only slightly with a subsequent temperature decrease to 0°C. A full width at half maximum (FWHM) DOI resolution of 2mmand an FWHM energy resolution of 15% were obtained at a temperature of 10°C. Phantom studies showed that DOI measurements significantly improved the reconstructed image resolution. In the first scanner configuration (parallel detector planes), the image resolution at the center of the field of view was 0.9-mm FWHM with 20 DOI bins and 1.6-mm FWHM with 1 DOI bin. In the second scanner configuration (detector planes at a 40° angle), the image resolution at the center of the field of view was 1.0-mm FWHM with 20 DOI bins and was not measurable when using only 1 bin. Conclusion: PET scanners based on this detector design offer the prospect of high and uniform spatial resolution (crystal size, ∼1 mm; DOI resolution, ∼2 mm), high sensitivity (20-mm-thick detectors), and compact size (DOI encoding permits detectors to be tightly packed around the subject and minimizes number of detectors needed).

Original languageEnglish (US)
Pages (from-to)1132-1140
Number of pages9
JournalJournal of Nuclear Medicine
Volume49
Issue number7
DOIs
StatePublished - Jul 1 2008

Keywords

  • Depth of interaction
  • Instrumentation
  • Position-sensitive avalanche photodiode
  • Small-animal PET

ASJC Scopus subject areas

  • Radiological and Ultrasound Technology

Fingerprint Dive into the research topics of 'A prototype PET scanner with DOI-encoding detectors'. Together they form a unique fingerprint.

Cite this